
6.867 Machine learning and neural networks

Problem set 2

Deadline: October 12, 11am in recitation

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed).

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write
your name on the top of every page.

Problem 1: Active Learning

Reference: Lecture three; Chapter 5-5.4.1

Our goal here is to get a better understanding of the sequential active learning method
described in lecture 3.

Let’s start by defining our model and assumptions. We use additive regression models with
fixed basis functions {φi(x)}i=1,...,m to model outputs as a function of inputs x:

f(x; w) = w0 + w1φ1(x) + . . .+ wmφm(x) (1)

The basis functions could simply return a specific component of the input vector as in
φi(x) = xi which would reduce the above model to linear regression. Alternatively, the
basis functions could measure similarity to “prototypes” as in radial basis functions:

φi(x) = exp

{
1

2s2
‖x− µi‖2

}
(2)

where µi specifies a location in the input space and the parameter s gives the spread around
µi.

1

The observed outputs y are assumed to be related to the inputs x through some “true”
weights w∗, and independently corrupted with zero mean Gaussian noise. Thus, for any n
input points {x1, . . . ,xn}, we model the observed outputs {y1, . . . , yn} as y1

· · ·
yn

 =

 1 φ1(x1) · · · φm(x1)
· · · · · · · · · · · ·
1 φ1(xn) · · · φm(xn)

  w∗0
· · ·
w∗m

+

 ε0
· · ·
εm

 (3)

y = Xw + ε (4)

where ε ∼ N(0, σ2 I). The overall noise variance σ2 is unknown but insignificant for our
purposes here.

It will be helpful to change our notation slightly. We define φ(x) = [1, φ1(x), . . . , φm(x)]T

as the feature vector (column vector) corresponding to an input point x. We can therefore
write the matrix X as

X =

 φ(x1)T

· · ·
φ(xn)T

 (5)

Moreover, we already know from lectures that given X, the noise in the observed outputs
cause our parameter estimates ŵ to be Gaussian random variables: ŵ ∼ N(w∗, σ2(XTX)−1).
For simplicity (and with no real loss of generality), we will assume hereafter that σ2 = 1.
It will be also helpful to define the inverse covariance matrix A = (XTX).

Now, given x, the variance in our predictions ŷ(x) = f(x, ŵ) = φ(x)T ŵ due to the noise
in the training outputs is given by

Var(ŷ(x)) = φ(x)T (XTX)−1φ(x) = φ(x)TA−1φ(x) (6)

We are finally ready to turn to our problem...

1. Let An be the inverse covariance matrix based on n training examples. Show that
An+1 = An + φ(xn+1)φ(xn+1)T . Is An symmetric for all n? Positive definite?

2. Find the positive coefficient λ such that A−1
n+1 = A−1

n − λA−1
n φ(xn+1)φ(xn+1)TA−1

n .
Express λ as a function of Varn(ŷ(xn+1)), the expected prediction error (after training
on the first n samples) at xn+1. (Hint: In order to check that a matrix B is the inverse
of a matrix A, check that AB = I).

3. Based on 1) and 2), show that the variance in our predictions at any point x cannot
increase as a result of including any new point xn+1 in the training set.

What we show here is that adding new data, regardless of how we choose the point
xn+1, and even if we do not get to choose it, cannot hurt the predictions. This
is true in expectation. That is, for any point xn+1, the expected error at another
arbitrary point x is lower than the error at x before incorperating (xn+1, yn+1) into
the prediction. The expectations here are with respect to all the observed outputs.

2

This result is independent of the type of feature vectors we use. This is good since
the feature vectors are typically rather constrained (e.g., φ(x) = [1, x, x2]T traces one
dimensional set of points in three dimensions).

4. Show that if we include any xn+1 in the training set, then the variance at xn+1 comes
down by a multiplicative factor that depends on the current variance at xn+1. Indeed,
the larger the variance, the faster it will come down.

This result guarantees that we can drive the prediction variance to zero at any desired
input point so long as we are willing to query the same point multiple times.

Problem 2: Gaussian Mixtures, Logistic, and Softmax

models

The following MATLAB functions can be found in the course Athena locker, and on the
course web page: multigaussian.m, gaussian2d and plotgaussians.m.

1. Use these functions to investigate different possible Gaussian decision boundaries.
For each of the following specifications, find an appropriate pair of Gaussians and
prior class probabilities. Turn in the appropriate plot, and the full specification of
the Gaussians (means and covariance matrices) and prior class probabilities.

(a) A linear decision boundary.

(b) A linear decision boundary, where both means are on the same side of the
decision boundary.

(c) A parabolic decision boundary.

(d) A non-continues decision boundary (i.e. one of the classes is represented by two
disconnected regions).

(e) A circular decision boundary.

(f) A skewed (non-circular) ellipsoid decision boundary, with only one of the means
inside the ellipsoid.

(g) No decision boundary– the entire plane is one decision region.

2. Which of the above decision boundaries can represent the decision boundary for a
logistic model ?

In many cases, it is necessary to classify into more than two classes. A natural extension of
the Gaussian mixture approach is to fit a Gaussian distribution for each class, and classify
each input vector to the class with the highest posterior probability for it.

3

3. We would like to modify the function plotgaussians() to plot the decision bound-
aries between three Gaussian. A partial modification can be found in the MATLAB
file plotgaussians3(), but it is missing the core instructions for plotting the decision
boundaries. Complete this function (turn in the MATLAB code) and use it to plot
decision boundaries on several examples. Turn in plots (and associated parameters)
for settings where

(a) All decision boundaries are linear.

(b) Some decision boundaries are linear, while others are quadratic.

(c) All decision boundaries are quadratic.

(d) There are only two decision regions (one class never gets selected).

ALSO: mark each decision region in the plots with an appropriate label.

Another possible approach is to generalize the the logistic model. Let x = [x1, x2, . . . , xd]
T

be the input vector, and suppose we would like to classify to k classes, that is the output y
can take a value in 1, . . . , k. The softmax generalization of the logistic model uses k(d+ 1)
weights w = (wij), i = 1, . . . , k, j = 0, . . . , d, which define the following k intermediate
values:

z1 = w10 +
∑
j

w1jxj

. . .

zi = wi0 +
∑
j

wijxj

. . .

zk = wk0 +
∑
j

wkjxj

The classification probabilities under the softmax model are:

Pr (y = i|x; w) =
ezi∑k
j=1 e

zj

4. Show that when k = 2 the softmax model reduces to the logistic model. That is,
show how both give rise to the same classification probabilities Pr (y|x). Do this
by constructing an explicit transformation between the weights: for any given set of
2(d+ 1) softmax weights, show an equivalent set of (d+ 1) logistic weights.

5. Which of the decision regions from question 3 can represent decision boundaries for
a softmax model ?

4

6. Show that the softmax model, for any k, can always be represented by a Gaussian
mixture model. What type of Gaussian mixture models are equivalent to a softmax
models ?

The stochastic gradient ascent learning rule for softmax is given by:

wij ← wij + ε
∑
t

∂

∂wij
log Pr

(
yt|xt,w

)
where (xt, yt) are the training examples. We would like to rewrite this rule as a delta
rule. In a delta rule the update is specified as a function of the difference between
the target and the prediction. In our case, our target for each example will actually
be a vector yt = (yt1, . . . , y

t
k) where:

yti =

{
1 if yt = i

0 if yt 6= i

Our prediction will be a corresponding vector of probabilities:

ŷt = (Pr
(
y = 1|xt

)
, . . . , (Pr

(
y = i|xt)

)
).

7. Calculate the derivative above, and rewrite the update rule as a function of yt − ŷt.

Problem 3: Regularization

Reference: Lecture five

We elaborate here a bit on the relation between the “effective” number of parameter choices
and regularization discussed in lecture 5. We do this in the context of a simple 1-dim logistic
regression model

P (y = 1|x,w) = g (w0 + w1x) (7)

where g(z) = (1 + exp{−z})−1. We assume that x ∈ [−1, 1].

To understand regularization in this context, we’ll try to carve up our parameter space
w = [w0, w1]T ∈ R2 into regions such that our loss (or log-probability) is roughly constant
within each region. This will help us determine how many “effective” parameter choices we
really have. Ideally, the regularization that we impose would directly limit (our estimate
of) the number of parameter choices.

A bit more precisely, we want the log-probability logP (y|x,w) to vary by no more than ε
within each region in the parameter space. To find such regions, we first examine how the

5

log of the logistic function varies as a function of its input: (this result will be useful to
you later on)

∂

∂z
log g(z) =

1

g(z)

∂

∂z
g(z) =

1

g(z)
g(z)(1− g(z)) = 1− g(z) (8)

In other words, since g(z) ∈ [0, 1] (probability), the derivative here is also bounded by 1.
The function log g(z) therefore varies at most with slope 1 as a function of z, or

| log g(z)− log g(z′)| ≤ |z − z′| (9)

for any two points z and z′. To use this result, we define z = w0 + w1x and z′ = w′0 + w′1x
for any x ∈ [−1, 1]. This gives

| logP (y = 1|x,w)− logP (y = 1|x,w′)| = | log g(z)− log g(z′)| ≤ |z − z′| (10)

= |(w0 − w′0) + (w1 − w′1)x| (11)

≤ |(w0 − w′0)|+ |(w1 − w′1)x| (12)

≤ |(w0 − w′0)|+ |(w1 − w′1)| (13)

since |x| ≤ 1 by assumption. So, whenever |w0 − w′0| + |w1 − w′1| ≤ ε, the corresponding
losses or (negative) log-probabilities are also bounded by ε. We can therefore carve up the
parameter space by finding discrete points w(i) and regions around them such that

|w(i)
0 − w′0|+ |w

(i)
1 − w′1| ≤ ε (14)

whenever w′ belongs to the ith region. These regions are shown in Figure 1 for ε = 0.4. We
have also included in the Figure the area limited by the Euclidean norm of the parameter
vector, ‖w‖2. Increasing the the limit ‖w‖2 clearly incorporates more “choices” and it
makes sense to use this type of norm in regularization.

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

|w|2

Figure 1: Regions in the parameter space corresponding to roughly constant losses for
simple logistic regression model.

6

Note: Explicitly finding the regions as we have done here is merely a conceptual device in
understanding (and analyzing) estimation methods. We never have to identify such regions
nor the discrete “effective” parameter choices in practice.

The problem:

The goal here is to understand regularization a bit better in the context of a simple logistic
regression model

P (y = 1|x,w) = g (w0 + w1x1 + . . .+ wdxd) (15)

We have provided you with a few helpful MATLAB functions for this purpose:

w = logisticreg(X,y,c) % (logisticreg.m) performs fast optimization of logis-
tic regression coefficients with squared norm regularization (regularization parameter
c).

[X,y] = sample(n) % (sample.m) generates training or test examples from a very
simple classification problem

EcvlogP = crossvalid(X,y) % (crossvalid.m) computes leave-one-out cross-validation
estimate of the expected log-probability of labels for logistic regression models.

1. Generate n = 20 training and n = 200 (or more) test examples using the sample

function. The resulting examples will be 10 dimensional vectors. We ask you to plot
training and test performance for different levels of regularization. More precisely,
for each c = {1, . . . , 20}, use the logisticreg function to get the corresponding pa-
rameter estimate ŵ. Evaluate and plot the average training and test log-probabilities
of labels as a function of the regularization parameter c. Keep the training and test
sets fixed while varying c. Return the resulting figure.

2. Explain the relevant qualitative properties of the two curves in your figure.

3. Use the crossvalid function to generate leave-one-out cross-validation estimates
for each c = {1, . . . , 20} and include these results in your figure. How useful is
cross-validation in approximating test performance? For setting the regularization
parameter c?

4. Explain the changes in the three curves when you add 30 examples to the existing
training set. (Note: it may be helpful to plot the new results using the same axis.
You can store the previous axis with prevaxis = axis and recover the settings later
on with axis(prevaxis)).

7

Problem 4: Stochastic Gradient Ascent

Reference: Lectures four, five; Chapter 6

Here you will solve a digit classification problem with logistic regression models. We have
made available the following training and test sets:

digit x.dat, digit y.dat, digit x test.dat, digit y test.dat.

1. Derive the stochastic gradient ascent learning rule for a logistic regression model
starting from the regularized likelihood objective

J(w; c) =
n∑
i=1

logP (yi|xi,w)− c

2
‖w‖2 (16)

where ‖w‖2 =
∑d

i=0 w
2
i , or by modifying your derivation of the delta rule for the

softmax model.

(Normally we would not include w0 in the regularization penalty but have done so
here for simplicity of the resulting update rule).

2. Write a matlab function w = SGlogisticreg(X,y,c,epsilon) that takes inputs sim-
milar to logisticreg from the previous section, and a learning rate parameter ε,
and uses stochastic gradient ascent to learn the weights. You may include additional
parammeters to control when to stop, or hard-code it into the function.

3. Provide a rationale for setting the learning rate and the stopping criterion in the
context of the digit classification task. You should assume that the regularization
parameter c remains fixed at 1. (You might wish to experiment with different learning
rates and stopping criterion but do NOT use the test set. Your justification should
be based on the available information before seeing the test set.)

4. Set c = 1 and apply your procedure for setting the learning rate and the stopping
criterion to evaluate the average log-probability of labels in the training and test sets.
Compare the results to those obtained with logisticreg. For each optimization
method, report the average log-probabilities for the labels in the training and test
sets as well as the corresponding mean classification errors (estimates of the miss-
classification probabilities). (Please include all MATLAB code you used for these
calculations)

5. Are the train/test differences between the optimization methods reasonable? Why?
(Repeat the gradient ascent procedure a couple of times to ensure that you are indeed
looking at a “typical” outcome)

6. The classifiers we found above are both linear classifiers, as are all logistic regression
classifiers. In fact, if we set c to a different value, we are still searching the same set

8

of linear classifiers. Try using logisticreg with different values of c, to see that you
get different classifications. Why are the resulting classifiers different, even though
the same set of classifiers is being searched ? Contrast the reason with the reason for
the differences you explained in the previous question.

7. Gaussian mixture models with identical covariance matrices also lead to linear clas-
sifiers. Is there a value of c such that training a Gaussian mixture model necessarily
leads to the same classification as training a logistic regression model using this value
of c ? Why ?

9

