
6.867 Machine learning and neural networks

Problem set 2

Deadline: October 12, 11am in recitation

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed).

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write
your name on the top of every page.

Problem 1: Active Learning

Reference: Lecture three; Chapter 5-5.4.1

Our goal here is to get a better understanding of the sequential active learning method
described in lecture 3.

Let’s start by defining our model and assumptions. We use additive regression models with
fixed basis functions {φi(x)}i=1,...,m to model outputs as a function of inputs x:

f(x; w) = w0 + w1φ1(x) + . . .+ wmφm(x) (1)

The basis functions could simply return a specific component of the input vector as in
φi(x) = xi which would reduce the above model to linear regression. Alternatively, the
basis functions could measure similarity to “prototypes” as in radial basis functions:

φi(x) = exp

{
1

2s2
‖x− µi‖2

}
(2)

where µi specifies a location in the input space and the parameter s gives the spread around
µi.

1

The observed outputs y are assumed to be related to the inputs x through some “true”
weights w∗, and independently corrupted with zero mean Gaussian noise. Thus, for any n
input points {x1, . . . ,xn}, we model the observed outputs {y1, . . . , yn} as y1

· · ·
yn

 =

 1 φ1(x1) · · · φm(x1)
· · · · · · · · · · · ·
1 φ1(xn) · · · φm(xn)

 w∗0
· · ·
w∗m

+

 ε0
· · ·
εm

 (3)

y = Xw + ε (4)

where ε ∼ N(0, σ2 I). The overall noise variance σ2 is unknown but insignificant for our
purposes here.

It will be helpful to change our notation slightly. We define φ(x) = [1, φ1(x), . . . , φm(x)]T

as the feature vector (column vector) corresponding to an input point x. We can therefore
write the matrix X as

X =

 φ(x1)T

· · ·
φ(xn)T

 (5)

Moreover, we already know from lectures that given X, the noise in the observed outputs
cause our parameter estimates ŵ to be Gaussian random variables: ŵ ∼ N(w∗, σ2(XTX)−1).
For simplicity (and with no real loss of generality), we will assume hereafter that σ2 = 1.
It will be also helpful to define the inverse covariance matrix A = (XTX).

Now, given x, the variance in our predictions ŷ(x) = f(x, ŵ) = φ(x)T ŵ due to the noise
in the training outputs is given by

Var(ŷ(x)) = φ(x)T (XTX)−1φ(x) = φ(x)TA−1φ(x) (6)

We are finally ready to turn to our problem...

1. Let An be the inverse covariance matrix based on n training examples. Show that
An+1 = An + φ(xn+1)φ(xn+1)T . Is An symmetric for all n? Positive definite?

2

Answer:

An+1 = XT
n+1Xn+1

Xn+1 =

 φ(x1)T

· · ·
φ(xn+1)T

An+1i,j =

n+1∑
k=1

XT
n+1i,k

Xn+1k,j

=
n+1∑
k=1

φi(xk)φj(xk)

=
n∑
k=1

φi(xk)φj(xk) + φi(xn+1)φj(xn+1)

= Ani,j + [φ(xn+1)φ(xn+1)T]i,j

An+1 = An + φ(xn+1)φ(xn+1)T

An is always symmetric, since φ(x)φ(x)T is symmetric, and a sum of sym-
metric matrices is always symmetric. If the feature vectors are of full rank, then
the covariance matrix is invertible and An, being the inverse of a covariance
matrix, is positive definite. However, if the feature vectors are not of full rank
(e.g. if there are only a few samples), then the predictor is ill-defined, and An
is non-invertible, and thus only positive semi-definite.

Scoring: 5 points, 3 for the proof, 1 for noting An is symmetric, and 1 for discussing
weather it is positive-definite

2. Find the positive coefficient λ such that A−1
n+1 = A−1

n − λA−1
n φ(xn+1)φ(xn+1)TA−1

n .
Express λ as a function of Varn(ŷ(xn+1)), the expected prediction error (after training
on the first n samples) at xn+1. (Hint: In order to check that a matrix B is the inverse
of a matrix A, check that AB = I).

Answer:

A−1
n+1An+1 = (A−1

n − λA−1
n φ(xn+1)φ(xn+1)TA−1

n)An+1

3

As we have seen in the previous problem...

I = [A−1
n − λA−1

n φ(xn+1)φ(xn+1)TA−1
n][An + φ(xn+1)φ(xn+1)T]

I = (A−1
n An) + A−1

n φ(xn+1)φ(xn+1)T − λA−1
n φ(xn+1)φ(xn+1)TA−1

n An−
λA−1

n φ(xn+1)φ(xn+1)TA−1
n φ(xn+1)︸ ︷︷ ︸

V arn(ŷ(xn+1))

φ(xn+1)T

I = I + A−1
n φ(xn+1)φ(xn+1)T − λA−1

n φ(xn+1)φ(xn+1)T−
λA−1

n φ(xn+1)V arn(ŷ(xn+1))φ(xn+1)T

0 = A−1
n φ(xn+1)φ(xn+1)T − λA−1

n φ(xn+1)φ(xn+1)T (I + V arn(ŷ(xn+1)))

A−1
n φ(xn+1)φ(xn+1)T = λA−1

n φ(xn+1)φ(xn+1)T (I + V arn(ŷ(xn+1)))

I = λ(I + V arn(ŷ(xn+1)))

λ =
1

(1 + V arn(ŷ(xn+1)))

Since we know V arn(ŷ(xn+1)) is positive, λ is a positive coefficient.

Scoring: 5 points

3. Based on 1) and 2), show that the variance in our predictions at any point x cannot
increase as a result of including any new point xn+1 in the training set.

Answer:

For all x

V arn+1(ŷ(xn))− V arn(ŷ(xn)) = −λφ(xn)TA−1
n φ(xn+1)φ(xn+1)TA−1

n φ(xn)

= −λ[φ(xn)TA−1
n φ(xn+1)][φ(xn)T (A−1

n)Tφ(xn+1)]T

= −λ[φ(xn)TA−1
n φ(xn+1)][φ(xn)T (ATn)−1φ(xn+1)]T

Since An, and so also A−1
n are symmetric:

= −λ[φ(xn)TA−1
n φ(xn+1)][φ(xn)TA−1

n φ(xn+1)]T

= −λ[φ(xn)TA−1
n φ(xn+1)]2

4

[φ(x)TA−1
n φ(xn+1)] is a scalar, so its square must be positive. We know λ is

also positive, so V arn+1(ŷ(xn)) − V arn(ŷ(xn)) must be negative. Therefore
the the change in variance must be less than or equal to 0.

Scoring: 6 points

What we show here is that adding new data, regardless of how we choose the point
xn+1, and even if we do not get to choose it, cannot hurt the predictions. This
is true in expectation. That is, for any point xn+1, the expected error at another
arbitrary point x is lower than the error at x before incorporating (xn+1, yn+1) into
the prediction. The expectations here are with respect to all the observed outputs.

This result is independent of the type of feature vectors we use. This is good since
the feature vectors are typically rather constrained (e.g., φ(x) = [1, x, x2]T traces one
dimensional set of points in three dimensions).

4. Show that if we include any xn+1 in the training set, then the variance at xn+1 comes
down by a multiplicative factor that depends on the current variance at xn+1. Indeed,
the larger the variance, the faster it will come down.

Answer:

Varn+1(ŷ(xn+1)) = φ(xn+1)TA−1
n+1φ(xn+1)

= φ(xn+1)T (A−1
n − λA−1

n Φn+1A
−1
n)φ(xn+1)

= Varn(ŷ(xn+1))− λφ(xn+1)TA−1
n φ(xn+1)φ(xn+1)TA−1

n φ(xn+1)

= Varn(ŷ(xn+1))− Varn(ŷ(xn+1))2

1 + Varn(ŷ(xn+1))

=
Varn(ŷ(xn+1))

1 + Varn(ŷ(xn+1))

And the variance at xn+1 decreases by (1 + Varn(ŷ(xn+1))).

Scoring: 5 points

This result guarantees that we can drive the prediction variance to zero at any desired
input point so long as we are willing to query the same point multiple times.

Problem 2: Gaussian Mixtures, Logistic, and Softmax

models

The following MATLAB functions can be found in the course Athena locker, and on the
course web page: multigaussian.m, gaussian2d and plotgaussians.m.

5

1. Use these functions to investigate different possible Gaussian decision boundaries.
For each of the following specifications, find an appropriate pair of Gaussians and
prior class probabilities. Turn in the appropriate plot, and the full specification of
the Gaussians (means and covariance matrices) and prior class probabilities.

(a) A linear decision boundary.

Answer: µ0 = [1, 1], µ1 = [−1,−1].P0 =

0.5, P1 = 0.5, Σ0 =

[
1 0
0 1

]
, Σ1 =[

1 0
0 1

]

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) A linear decision boundary, where both means are on the same side of the
decision boundary.

Answer: µ0 = [1, 1], µ1 = [−1,−1].P0 =

0.995, P1 = 0.005, Σ0 =

[
1 0
0 1

]
, Σ1 =[

1 0
0 1

]

−10 −8 −6 −4 −2 0 2 4 6 8
−10

−8

−6

−4

−2

0

2

4

6

8

(c) A parabolic decision boundary.

Answer: µ0 = [1, 1], µ1 = [−1,−1].P0 =

0.5, P1 = 0.5, Σ0 =

[
1 0
0 1

]
, Σ1 =[

2 0
0 1

]

−10 −8 −6 −4 −2 0 2 4 6 8
−10

−8

−6

−4

−2

0

2

4

6

(d) A non-continues decision boundary (i.e. one of the classes is represented by two
disconnected regions).

Answer: µ0 = [0, 0], µ1 = [0, 0].P0 =

0.5, P1 = 0.5, Σ0 =

[
4 0
0 2

]
, Σ1 =[

1 0
0 2

]

−4 −3 −2 −1 0 1 2 3 4
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e) A circular decision boundary.

Answer: µ0 = [1, 1], µ1 = [1, 1].P0 =

0.5, P1 = 0.5, Σ0 =

[
1 0
0 1

]
, Σ1 =[

2 0
0 2

]

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

(f) A skewed (non-circular) ellipsoid decision boundary, with only one of the means
inside the ellipsoid.

Answer: µ0 = [−2, 1], µ1 = [1, 1].P0 =

0.5, P1 = 0.5, Σ0 =

[
1 0
0 1/2

]
, Σ1 =[

2 0
0 4

]

−10 −8 −6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

5

(g) No decision boundary– the entire plane is one decision region.

Answer: In order to have the entire plane be classified as a single class,
the priors must be unequal. The simplest solution is with biased priors
(either with a very small bias, e.g. P1 = 0.51, or even with a definite prior

7

P1 = 1) and otherwise identical Gaussians: since the Gaussian density at
any point will be equal, the prior will always be the deciding factor. If
the priors are equal, then there must be a point in space (perhaps outside
the plotted region) in which each one is greater than the other (since the
integral of both of them is one, the integral of the difference is zero, and
so if it is negative somewhere it must be positive elsewhere).

If the covariance matrices are equal, the means must also be equal:
otherwise, if you go far enough in the direction of one of the means, that
Gaussian will eventually have higher posterior. To see this, consider the
exponent of the logistic model giving to the class postiriors (we know that
the class postiriors of equal-covariance Gaussians is given by a logistic). It is
a linear function x, with non-zero slope, and so must cross zero somewhere.
The only exception is if the prior is deterministic (P1 = 1), in which case
no matter what we do, that class will always have a higher posterior (in
fact a posterior probability of one).

If the covariance matrices are not equal, the exponent in the class pos-
terior is quadratic, and so it might or might not cross zero, depending on
weather the quadratic function has real-valued roots.

Answers in which the mixture components where identical (identical
means and covariances, and priors of 1/2) are not acceptable, as one can-
not really discuss a decision region. Rather, the whole plane is a decision
boundary, in some sense.

Scoring: 5 points, roughly 2/3 per item. 2 points were taken off if the priors did not
sum up to one.

2. Which of the above decision boundaries can represent the decision boundary for a
logistic model ?

Answer: The decision boundaries (a), (b) and (g) can represent those of a
logistic model. We know that the logistic model yields linear decision bound-
aries. We can get the entire plane in one decision region by choosing a non-zero
afine weight w0, but setting all the other weights to zero. The classification is
then independent of the input vector.

Scoring: 3 points

In many cases, it is necessary to classify into more than two classes. A natural extension of
the Gaussian mixture approach is to fit a Gaussian distribution for each class, and classify
each input vector to the class with the highest posterior probability for it.

3. We would like to modify the function plotgaussians() to plot the decision bound-
aries between three Gaussian. A partial modification can be found in the MATLAB

8

file plotgaussians3(), but it is missing the core instructions for plotting the decision
boundaries. Complete this function (turn in the MATLAB code) and use it to plot
decision boundaries on several examples.

Answer: The following lines complete the function plotgaussians3.m:

contour(x,y,g1*p1-max(g2*p2,g3*p3),[0 0],linespecs{1});

contour(x,y,g2*p2-max(g1*p1,g3*p3),[0 0],linespecs{1});

contour(x,y,g3*p3-max(g2*p2,g1*p1),[0 0],linespecs{1});

Each of these lines plots the decision region of one of the three classes. Two
of these plots are actually enough, and so we could have dropped the last line.

Turn in plots (and associated parameters) for settings where

(a) All decision boundaries are linear.

Answer: µ0 = [0, 0], µ1 = [0, 5], µ2 =
[55].P0 = 0.33333, P1 = 0.33333, P3 =

0.33333, Σ0 =

[
1 0
0 1

]
, Σ1 =

[
1 0
0 1

]
,

Σ2 =

[
1 0
0 1

]
,

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

0

5

10

(b) Some decision boundaries are linear, while others are quadratic.

Answer: µ0 = [0, 0], µ1 = [0, 5], µ2 =
[55].P0 = 0.33333, P1 = 0.33333, P3 =

0.33333, Σ0 =

[
4 0
0 1

]
, Σ1 =

[
1 0
0 1

]
,

Σ2 =

[
1 0
0 1

]
,

−10 −8 −6 −4 −2 0 2 4 6 8 10
−2

0

2

4

6

8

10

(c) All decision boundaries are quadratic.

9

Answer: µ0 = [0, 0], µ1 = [0, 5], µ2 =
[55].P0 = 0.33333, P1 = 0.33333, P3 =

0.33333, Σ0 =

[
1 0
0 3

]
, Σ1 =

[
4 0
0 1

]
,

Σ2 =

[
1 0
0 2

]
,

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d) There are only two decision regions (one class never gets selected).

Answer: µ0 = [0, 0], µ1 = [0, 5], µ2 =
[55].P0 = 0, P1 = 0.5, P3 = 0.5, Σ0 =[

1 0
0 3

]
, Σ1 =

[
4 0
0 1

]
, Σ2 =

[
1 0
0 2

]
,

(see notes for 1(g)).

−8 −6 −4 −2 0 2 4 6 8
−10

−8

−6

−4

−2

0

2

4

6

8

10

ALSO: mark each decision region in the plots with an appropriate label.

Scoring: 3 points for the plotting routine, and 3 points for the plots

Another possible approach is to generalize the the logistic model. Let x = [x1, x2, . . . , xd]
T

be the input vector, and suppose we would like to classify to k classes, that is the output y
can take a value in 1, . . . , k. The softmax generalization of the logistic model uses k(d+ 1)
weights w = (wij), i = 1, . . . , k, j = 0, . . . , d, which define the following k intermediate
values:

z1 = w10 +
∑
j

w1jxj

. . .

zi = wi0 +
∑
j

wijxj

. . .

zk = wk0 +
∑
j

wkjxj

10

The classification probabilities under the softmax model are:

Pr (y = i|x; w) =
ezi∑k
j=1 e

zj

4. Show that when k = 2 the softmax model reduces to the logistic model. That is,
show how both give rise to the same classification probabilities Pr (y|x). Do this
by constructing an explicit transformation between the weights: for any given set of
2(d+ 1) softmax weights, show an equivalent set of (d+ 1) logistic weights.

Answer: Under a logistic model with weights w′:

p(Y = 1|x; w) =
1

1 + e−z′
(7)

Where z′ = w′0 +
∑

j w
′
jxj. In the softmax model,

p(Y = 1|x; w) =
ez1

ez1 + ez2
(8)

equating the two:

1
1+e−z′

= ez1
ez1+ez2

ez1 + ez2 = ez1 + ez1e−z
′

ez1 + ez2 = ez1 + ez1+z′

ez1−z
′

= ez2

z′ = z1 − z2 Taking the log

(9)

With this result we can see that if we set w′j = w1j − w2j for each j, the the
two models are equivalent.

Scoring: 4 points

5. Which of the decision regions from question 3 can represent decision boundaries for
a softmax model ?

Answer: Again, only linear decision boundaries are possible. Hence, (a) is
possible, but (b) and (c) aren’t. Having only two decision regions is possible
if the decision boundary between them is linear, as in our example for (d).
Other examples for (d) might have a quadratic decision boundary, which is not
attainable with a logistic model.

Scoring: 2 points

6. Show that the softmax model, for any k, can always be represented by a Gaussian
mixture model. What type of Gaussian mixture models are equivalent to a softmax
models ?

11

Answer: Consider a softmax model with k classes and weights wij and denote
wi the d-element vector with components (wi)j = wij for 1 ≤ j ≤ d then the
softmax posterior is given by:

Pr (y|x) =
ewT

y x+wy0∑
i e

wT
i x+wi0

.

We would like like to find Gaussian mixture parameters (πi, µi,Σi)i=1..k that
would yield the same posterior. The postiriors class probabilities of such a
Gaussian mixture is given by:

Pr (y|x; (πi, µi,Σi)i=1..k) =
πy|Σy|−

d
2 e−

1
2

(x−µy)TΣ−1
y (x−µy)

πi|Σi|−
d
2 e−

1
2

(x−µi)TΣ−1
i (x−µi)

=
πy|Σy|−

d
2 e−

1
2

(xTΣ−1
y x−xTΣ−1

y µy−µTy Σ−1
y x+µTy Σ−1

y µy)∑
i πi|Σi|−

d
2 e−

1
2

(xTΣ−1
i x−xTΣ−1

i µ−µTi Σ−1
i x+µTi Σ−1

i µi)

Taking advantage of covariance matrices being symmetric:

=
πy|Σy|−

d
2 e−

1
2

(xTΣ−1
y x−2µTy Σ−1

y x+µTy Σ−1
y µy)∑

i πi|Σi|−
d
2 e−

1
2

(xTΣ−1
i x−2µTi Σ−1

i x+µTi Σ−1
i µi)

The exponents are quadratic functions of x. But in the softmax posterior the
exponents are linear functions of x. In order to get linear functions in the
exponents, we know we must choose identical covariance matrices, causing the
quadratic terms to cancel out. Setting all covariance matrices to Σ:

=
πy|Σ|−

d
2 e−

1
2

(xTΣ−1x−2µTy Σ−1x+µTy Σ−1µy)∑
i πi|Σ|−

d
2 e−

1
2

(xTΣ−1x−2µTi Σ−1x+µTi Σ−1µi)

=
πye

− 1
2

(−2µTy Σ−1x+µTy Σ−1µy)∑
i πie

− 1
2

(−2µTi Σ−1x+µTi Σ−1µi)

=
eµ

T
y Σ−1x− 1

2
µTy Σ−1µy+log πy∑

i e
µTi Σ−1x− 1

2
µTi Σ−1µi+log πi

This posterior looks very much like the softmax posterior, with a linear function
of x in the exponent. To get the coefficients of x to be as in the softmax
posterior, we must set the means and covariances such that:

µiΣ
−1 = wi for all i (10)

We can do this for any invertible Σ. But it is enough for us to show that there
is one set of Gaussian mixture parameters that yields the desired posterior,
and so we will arbitrarily set Σ = I. To satisfy (10), we get that µi must be

12

equal to wi (for this specific choice of the covariance matrix). This gives us a
Gaussian mixture posterior of:

Pr (y|x; (πi, µi = wi,Σi = I)i=1..k) =
ewT

y x− 1
2
wT
y wy+log πy∑

i e
wT
i x− 1

2
wT
i wi+log πi

(11)

We would like to set the priors πi such that the affine terms would agree
with wi0. It is tempting to set the priors such that log πi − 1

2
wT
i wi = wi0,

which would yield the softmax posterior. However, this might result in negative
priors, or priors that do not sum up to one. Instead, we first multiply both the
numerator and denominator by some constant Z (to be determined), which
will effectively normalize the priors:

=
Zπye

wT
y x− 1

2
wT
y wy∑

i Zπie
wT
i x− 1

2
wT
i wi

Now we can get Zπie
− 1

2
wY
i wi = ewi0 by setting πi = e

1
2
wY
i wi+wi0/Z, and in

order to normalize the priors we get that Z =
∑

i e
1
2
wY
i wi+wi0 .

To summarize, we saw how for any softmax weights, we can always choose
the following parameters:

πi =
e

1
2
wY
i wi+wi0∑

j e
1
2
wY
j wj+wj0

µi = wi

Σi = I

and get a Gaussian mixture model that has the softmax posterior.
Although we saw how to get a Gaussian mixture model with unit covariance

matrices, in fact any Gaussian mixture model with equal covariance matrices
in all of its components has a posterior which can be represented as a softmax.
If all components share the same covariance matrix, regardless of what this
covariance matrix is, the quadratic terms will cancel out (as we saw), leading
to a linear functions in the exponents, and thus a softmax posterior.

In our derivation, note that we arbitrarily choose Σ = I, but in fact we
could have satisfied (10) using any invertible Σ (regardless of the weights of
the softmax). Choosing a different covariance matrix, we would get a different
Gaussian mixture model, with different joint distribution Pr (X, Y), but with
the same posterior Pr (Y |X). Note that the softmax model only specifies a
posterior, and not a joint distribution.

Scoring: 6 points (2 points lost for neglecting to verify the priors were legitimate)

13

The stochastic gradient ascent learning rule for softmax is given by:

wij ← wij + ε
∑
t

∂

∂wij
log Pr

(
yt|xt,w

)
where (xt, yt) are the training examples. We would like to rewrite this rule as a delta
rule. In a delta rule the update is specified as a function of the difference between
the target and the prediction. In our case, our target for each example will actually
be a vector yt = (yt1, . . . , y

t
k) where:

yti =

{
1 if yt = i

0 if yt 6= i

Our prediction will be a corresponding vector of probabilities:

ŷt = (Pr
(
y = 1|xt

)
, . . . , (Pr

(
y = i|xt)

)
).

7. Calculate the derivative above, and rewrite the update rule as a function of yt − ŷt.

Answer:

log(Pr(y = i)) = zi − log

(∑
l

ezl

)
(12)

∂zi
∂wij

= xj (13)

Two cases:

∂ log Pr(y = i)

∂wij
= xj −

ezi∑
l e
zl
xj = yixj − ŷixj (14)

∂ log Pr(y = k 6= i)

∂wij
= − ezi∑

l e
zl
xj = yixj − ŷixj (15)

Combining them in matrix notation:

∂ log Pr(yt|xt)
∂wij

= ytixj − ŷtixj

=
[(
yt − ŷt

)T
xt
]
ij

Giving the new update rule:

w← w + ε
(
yt − ŷt

)T
xt (16)

Scoring: 4 points

14

Problem 3: Regularization

Reference: Lecture five

We elaborate here a bit on the relation between the “effective” number of parameter choices
and regularization discussed in lecture 5. We do this in the context of a simple 1-dim logistic
regression model

P (y = 1|x,w) = g (w0 + w1x) (17)

where g(z) = (1 + exp{−z})−1. We assume that x ∈ [−1, 1].

To understand regularization in this context, we’ll try to carve up our parameter space
w = [w0, w1]T ∈ R2 into regions such that our loss (or log-probability) is roughly constant
within each region. This will help us determine how many “effective” parameter choices we
really have. Ideally, the regularization that we impose would directly limit (our estimate
of) the number of parameter choices.

A bit more precisely, we want the log-probability logP (y|x,w) to vary by no more than ε
within each region in the parameter space. To find such regions, we first examine how the
log of the logistic function varies as a function of its input: (this result will be useful to
you later on)

∂

∂z
log g(z) =

1

g(z)

∂

∂z
g(z) =

1

g(z)
g(z)(1− g(z)) = 1− g(z) (18)

In other words, since g(z) ∈ [0, 1] (probability), the derivative here is also bounded by 1.
The function log g(z) therefore varies at most with slope 1 as a function of z, or

| log g(z)− log g(z′)| ≤ |z − z′| (19)

for any two points z and z′. To use this result, we define z = w0 + w1x and z′ = w′0 + w′1x
for any x ∈ [−1, 1]. This gives

| logP (y = 1|x,w)− logP (y = 1|x,w′)| = | log g(z)− log g(z′)| ≤ |z − z′| (20)

= |(w0 − w′0) + (w1 − w′1)x| (21)

≤ |(w0 − w′0)|+ |(w1 − w′1)x| (22)

≤ |(w0 − w′0)|+ |(w1 − w′1)| (23)

since |x| ≤ 1 by assumption. So, whenever |w0 − w′0| + |w1 − w′1| ≤ ε, the corresponding
losses or (negative) log-probabilities are also bounded by ε. We can therefore carve up the
parameter space by finding discrete points w(i) and regions around them such that

|w(i)
0 − w′0|+ |w

(i)
1 − w′1| ≤ ε (24)

whenever w′ belongs to the ith region. These regions are shown in Figure 1 for ε = 0.4. We
have also included in the Figure the area limited by the Euclidean norm of the parameter

15

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

|w|2

Figure 1: Regions in the parameter space corresponding to roughly constant losses for
simple logistic regression model.

vector, ‖w‖2. Increasing the the limit ‖w‖2 clearly incorporates more “choices” and it
makes sense to use this type of norm in regularization.

Note: Explicitly finding the regions as we have done here is merely a conceptual device in
understanding (and analyzing) estimation methods. We never have to identify such regions
nor the discrete “effective” parameter choices in practice.

The problem:

The goal here is to understand regularization a bit better in the context of a simple logistic
regression model

P (y = 1|x,w) = g (w0 + w1x1 + . . .+ wdxd) (25)

We have provided you with a few helpful MATLAB functions for this purpose:

w = logisticreg(X,y,c) % (logisticreg.m) performs fast optimization of logis-
tic regression coefficients with squared norm regularization (regularization parameter
c).

[X,y] = sample(n) % (sample.m) generates training or test examples from a very
simple classification problem

EcvlogP = crossvalid(X,y) % (crossvalid.m) computes leave-one-out cross-validation
estimate of the expected log-probability of labels for logistic regression models.

1. Generate n = 20 training and n = 200 (or more) test examples using the sample

function. The resulting examples will be 10 dimensional vectors. We ask you to plot
training and test performance for different levels of regularization. More precisely,
for each c = {1, . . . , 20}, use the logisticreg function to get the corresponding pa-
rameter estimate ŵ. Evaluate and plot the average training and test log-probabilities

16

of labels as a function of the regularization parameter c. Keep the training and test
sets fixed while varying c. Return the resulting figure.

Answer: We use the following MATLAB functions:

function [trainll, testll, cvll] = testlogistic(n,maxc)

[trainx, trainy] = sample(n);

[testx, testy] = sample(1000);

trainll = zeros(maxc,1);

testll = zeros(maxc,1);

cvll = zeros(maxc,1);

for c=1:maxc

w = logisticreg(trainx,trainy,c);

trainll(c) = logisticll(trainx,trainy,w);

testll(c) = logisticll(testx,testy,w);

cvll(c) = crossvalid(trainx,trainy,c);

end

function ll = logisticll(x,y,w)

p = g(w(1) + x*w(2:end));

ll = mean(y.*log(p) + (1-y).*log(1-p));

function p = g(z)

p = 1./(1+exp(-z));

Using these functions, the following code generates the graphs for this, and
subsequent, questions:

>> [train20,test20,cv20] = testlogistic(20,20);

>> [train50,test50,cv50] = testlogistic(50,20);

>> plot([train20,test20,cv20]);

>> hold

>> legend(’train’,’test’,’cv’);

>> plot([train50,test50,cv50],’--’);

>> gtext(’training set sizes: 20 (solid), 50 (dashed)’)

Scoring: 5 points

2. Explain the relevant qualitative properties of the two curves in your figure.

Answer: The training performance decreases as we increase the regularization
parameter C, since we are decreasing the relative importance of fitting the
training data.

The test performance improves due to less overfitting.

17

0 2 4 6 8 10 12 14 16 18 20
−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

training set sizes: 20 (solid), 50 (dashed)

train
test
cv

Figure 2: Logistic regression performance (Problem 3)

Most importantly, the training performance becomes a more accurate pre-
dictor of the test performance (i.e. the curves get closer), which is the goal of
regularization.

Scoring: 5 points

3. Use the crossvalid function to generate leave-one-out cross-validation estimates
for each c = {1, . . . , 20} and include these results in your figure. How useful is
cross-validation in approximating test performance? For setting the regularization
parameter c?

Answer: The cross-validation performance is slightly worse than the test error
(since we are plotting the log-likelihood, higher is better). This is reasonable,
since the cross-validation training uses only 19, instead of 20, examples. It is
thus not a very accurate predictor of the test performance. However, although
it is consistently worse, it does mirror the test error, and so is useful for setting
the regularization parameter C.

Scoring: 5 points, 2 for the generating the figure, 3 for the explanation

18

4. Explain the changes in the three curves when you add 30 examples to the existing
training set. (Note: it may be helpful to plot the new results using the same axis.
You can store the previous axis with prevaxis = axis and recover the settings later
on with axis(prevaxis)).

Answer: The training performance decreases, since it becomes harder to fit
all the training points. This is especially pronounced when there is not much
regularization, and the training can more freely try to (over)fit the training
points.

The test performance, and with it also the cross-validation estimate, in-
crease, as more data is available from training. The cross-validation more
accurately reflects the test error, since the relative difference in the training set
size drops from 1/20 to 1/50.

Scoring: 5 points

Problem 4: Stochastic Gradient Ascent

Reference: Lectures four, five; Chapter 6

Here you will solve a digit classification problem with logistic regression models. We have
made available the following training and test sets:

digit x.dat, digit y.dat, digit x test.dat, digit y test.dat.

1. Derive the stochastic gradient ascent learning rule for a logistic regression model
starting from the regularized likelihood objective

J(w; c) =
n∑
i=1

logP (yi|xi,w)− c

2
‖w‖2 (26)

where ‖w‖2 =
∑d

i=0 w
2
i , or by modifying your derivation of the delta rule for the

softmax model.

(Normally we would not include w0 in the regularization penalty but have done so
here for simplicity of the resulting update rule).

Answer: As shown in class, we rewrite:

J(w; c) =
n∑
i=1

(
logP (yi|xi,w)− c

2n
‖w‖2

)

19

And the stochastic online gradient ascent learning rule using the ith pattern is
given by:

wj ←wj + ε
∂

∂wj

(
logP (yi|xi,w)− c

2n
‖w‖2

)
= wj + ε

(
∂

∂wj
logP (yi|xi,w)− c

2n

∂

∂wj
‖w‖2

)
We will calculate both of these derivatives.

The first is just the regular (no regularization) gradient ascent derivative:

∂

∂wj
logP (yi|xi,w)

using the identity g(z)=1-g(z) and checking for yi = 0 and yi = 1:

=
∂

∂wj
log g

(
(−1)1−yi(wTxi + w0)

)
recalling that (log g(z))′ = g′(z)

g(z)
= g(z)(1−g(z))

g(z)
= 1− g(z):

=
(
1− g((−1)1−yi(wTxi + w0))

)
(−1)1−yi ∂(wTxi + w0)

∂wj

again checking for yi = 0 and yi = 1 we get:

= (yi − P (1|xi; w))
∂(wTxi + w0)

∂wj

and for j 6= 0:

= (yi − P (1|xi; w))xi,j

while for j = 0 we get ∂
∂w0

logP (yi|xi,w) = (yi − P (1|xi; w)).
The derivative in the second term is:

∂

∂wj
‖w‖2 =

∂

∂wj

∑
k

w2
k = 2wj

Combining we get:

wj ←wj + ε
∂

∂wj

(
logP (yi|xi,w)− c

2n
‖w‖2

)
= wj + ε

(
(yi − P (1|xi; w))xi,j −

c

2n
2wj

)
= (1− εc

n
)wj + ε(yi − P (1|xi; w))xi,j

20

Where xi,0 is taken to be one. Considering this as an initial coordinate of xi,
we can write this in matrix form:

w← (1− εc

n
)w + ε(yi − P (1|xi; w))xi

Scoring: 5 points

2. Write a MATLAB function w = SGlogisticreg(X,y,c,epsilon) that takes inputs
similar to logisticreg from the previous section, and a learning rate parameter ε,
and uses stochastic gradient ascent to learn the weights. You may include additional
parameters to control when to stop, or hard-code it into the function.

Answer:

function [w] = SGlogisticreg(X,y,c,epsilon,stopdelta)

[n,d] = size(X);

X = [ones(n,1),X];

w = zeros(d+1,1);

cont = 1;

while (cont)

perm = randperm(n);

oldw = w;

for i=1:n

w = (1-epsilon*c/n)*w+epsilon*(y(i)-g(X(i,:)*w))*X(i,:)’ ;

end

cont = norm(oldw-w)>=stopdelta*norm(oldw) ;

end

Scoring: 5 points

3. Provide a rationale for setting the learning rate and the stopping criterion in the
context of the digit classification task. You should assume that the regularization
parameter c remains fixed at 1. (You might wish to experiment with different learning
rates and stopping criterion but do NOT use the test set. Your justification should
be based on the available information before seeing the test set.)

Answer: Learning rate: If the learning rate is too high, any memory of
previous updates will be wiped out (beyond the last few points used in the
updates). It’s important that all the points affect the resulting weights and
so the learning rate should scale somehow with the number of examples. But
how? When the stochastic gradient updates converge, we are not changing
the weights on average. So each update can be seen as a slight random
perturbation around the correct weights. We’d like to keep such stochastic
effects from pushing the weights too far from the optimal solution. One way to

21

deal with this is to simply average the random effects by making the learning
rate scale as ε = c

n
for a constant c, somewhat less than one.

But this would be slow. It’s good to keep the variance of the sum of the
random perturbation at a constant and instead set ε = c√

n
: You may recall

from the first problem set that if Zi is a Gaussian with zero zero and unit
variance, then

∑n
i=1 Zi has variance n. Here Zi corresponds to a gradient

update based on the ith example. Dividing by the standard deviation of the
sum,

√
n, makes the gradient updates have an overall fixed variance.

Since the update is also proportional to the norm of the input examples
you might also divide the learning rate by the overall scale of the inputs. If we
have d binary coordinates, the norm is at most

√
d. We get a learning rate of

ε = c√
nd

.
Stopping criterion: We want to stop when a full iteration through the

training set does not make much difference on average. Note that unless we can
perfectly separate the training set, we would still expect to get specific training
examples that will cause change, but at convergence they should cancel each
other out. We should also not stop just because one, or a few, examples did
not cause much change– it might be that other examples will.

And so, after each full iteration through the training set, we see how much
the weight changed since before the iteration. As we do not know what the
scale of the weights will be, we check the magnitude of the change relative to
the magnitude of the weights. We stop if the change falls bellow some low
threshold, which represents out desired accuracy of the result (this ratio is the
parameter stopdelta).

Scoring: 1 point

4. Set c = 1 and apply your procedure for setting the learning rate and the stopping
criterion to evaluate the average log-probability of labels in the training and test sets.
Compare the results to those obtained with logisticreg. For each optimization
method, report the average log-probabilities for the labels in the training and test
sets as well as the corresponding mean classification errors (estimates of the miss-
classification probabilities). (Please include all MATLAB code you used for these
calculations)

Answer: To calculate also the classification errors, we use a slightly expanded
version of logisticll.m:

function [ll,err] = logisticle(x,y,w)

p = g(w(1) + x*w(2:end));

ll = mean(y.*log(p) + (1-y).*log(1-p));

err = mean(y ~= (p>0.5));

We set the learning rate to: ε = 0.1√
nd

= 0.1
80

, try a stopping granularity of
δ = 0.001, and get:

22

Average log probabilities:
Newton-Raphson Stochastic Gradient Ascent

Train -0.0829 -0.1190
Test -0.2876 -0.2871

Classification errors:
Newton-Raphson Stochastic Gradient Ascent

Train 0.01 0.02
Test 0.125 0.1125

Results for various stopping granularities are presented in figures 3 and 4.

Scoring: 5 points

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Horizontal line are reference trained with Newton−Raphson

log10(stoping delta)

lo
g

lik
el

ih
oo

d:
 lo

g
P

(y
i|x

i)

train
test

Figure 3: Logistic regression log-likelihood, when trained with stochastic gradient ascent,
for varying stopping criteria

5. Are the train/test differences between the optimization methods reasonable? Why?
(Repeat the gradient ascent procedure a couple of times to ensure that you are indeed
looking at a “typical” outcome)

Answer: Although both optimization methods are trying to optimize the same
objective function, neither of them is perfect, and so we expect to see some
discrepancies, as we do in fact see.

23

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

log10(stoping delta)

cl
as

si
fic

at
io

n
er

ro
r

Horizontal line are reference trained with Newton−Raphson

train
test

Figure 4: Logistic regression mean classification error, when trained with stochastic gradi-
ent ascent, for varying stopping criteria

In general, we would expect the Newton-Raphson method implemented
in logisticreg.m to perform better, i.e. come closer to the true optimum.
This should lead to a better objective function, which especially for small values
of c, would translate into higher training performance / lower training error.
On the other hand, the stochastic gradient ascent might not come as close
to the optimum, especially when the stopping criteria is very relaxed. This
can be clearly seen in figures 3 and 4, where training performance improves
as the stopping criteria becomes more stringent, and eventually converges to
the (almost) true optimum found with Newton-Raphson. Note also the slight
deviations from monotonicity, which are a result of the randomness in the
stochastic gradient ascent procedure.

However, the same cannot necessarily be said about the test error. In
fact, early stopping of stochastic gradient ascent can in some cases be seen as
a form of regularization, that might lead to better generalization, and hence
better training error. This can be seen in the figures (as well as in the tables for
δ = 0.001), especially when comparing the classification errors. For values of
δ of around 0.01 to 0.0005, the logistic model found with stochastic gradient

24

outperforms the “optimum” logistic model found with Newton-Raphson. This
does not mean that Newton-Raphson did not correctly solve the optimization
problem— we tried to optimize maximize training log likelihood, which indeed
we did. We simply did too good of a job and overfit the training data.

Early stopping can sometimes be useful as a regularization technique. In
this case, we could have also increased c to get stronger regularization.

Scoring: 1 point

6. The classifiers we found above are both linear classifiers, as are all logistic regression
classifiers. In fact, if we set c to a different value, we are still searching the same set
of linear classifiers. Try using logisticreg with different values of c, to see that you
get different classifications. Why are the resulting classifiers different, even though
the same set of classifiers is being searched ? Contrast the reason with the reason for
the differences you explained in the previous question.

Answer: We are searching the same space of classifiers, but with a different
objective function. This time not the optimization method is different (which in
theory should not make much difference), but the actual objective is different,
and hence the true optimum is different. We would not expect to find the same
classifier.

Scoring: 5 points

7. Gaussian mixture models with identical covariance matrices also lead to linear clas-
sifiers. Is there a value of c such that training a Gaussian mixture model necessarily
leads to the same classification as training a logistic regression model using this value
of c ? Why ?

Answer: There is no such value of c. The objective functions are different,
even for c = 0. The logistic regression objective function aims to maximize
the likelihood of the labels given the input vectors, while the Gaussian mixture
objective is to fit a probabilistic model for the training input vectors and labels,
by maximizing their joint joint likelihood.

Scoring: 5 points

25

