6.867 Machine learning and neural networks

Problem set 3

Deadline: November 2, 11am in recitation

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). You are encouraged to think about,
and turn in, answers to questions marked “optional’— they will be read and corrected, but
a grade will not be recorded for them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write
your name on the top of every page.

Problem 1: Boosting

This question is about AdaBoost, the simple boosting algorithm presented in the lectures.
We assume that there is a method unknown to us that produces a component (weak)
hypothesis h(x) in response to a weighted training set. The resulting weak classifier should
do at least a bit better than random guessing on the weighted training set it was trained
on. We make no assumptions about how well it does on other possibly differently weighted
training sets.

Let D = {(x1,%1) .-, (Xn,yn)} be the training set of examples x; and binary (£1) labels
y;. We denote the weights on the training examples at the beginning of the k' boosting
iteration as pg(1),...,pr(n), where > 7" pr(i) = 1. Unlike in the lecture, the component
hypotheses h(x) can produce a real valued output (confidence rated classifiers). The sign
of the output indicates the label and the magnitude specifies a measure of “confidence” in
the classification decision. So, for example, h(x) = 10 would be interpreted as a relatively
confident prediction of label 1.

Now, starting with equal weights p; (i) = 1/n, AdaBoost generates a sequence of hypotheses
hi(X), ..., hm(x), where each hy(x) was trained with a different set of example weights.
After having generated a hypothesis hx(x) in response to weights py (i) at the k' iteration,
the example weights are updated according to

Prv1(?) = ¢ pr(i) exp(—apyihi(x)), i=1,...,n (1)

where ¢ is the normalization constant ensuring that > " pri1(i) = 1 and & gives the
votes that we assign to the new component classifier h;(x). We would like to assign these
votes so that the new component classifier hy(x) is at chance performance relative to the
new weights pr11(7). One way to express this is as follows:

Zkarl(i)yihk(Xi) =0 (2)

i=1

1. Show that if hg(x;) generates only binary £1 outputs, then the above condition
corresponds to requiring that the training error is exactly 0.5 relative to the new
weights

Things are a bit different here since the component classifier can generate real valued
outputs. We can view the condition instead as a way of decorrelating the predictions and
the labels relative to the new weights.

2. Show that if we choose &y as the minimizing argument of

J(a) =log (Zpk(i) eXp{—Oéyz'hk(Xz')}> (3)

=1

we will indeed ensure that the decorrelation condition (2) holds for the new weights.
(Hint: Do not attempt to compute é&;. Instead, set the derivative to zero and use the
resulting equation, which &, must satisfy, in order to show (2) is satisfied.

This should look a bit suspicious... as if there were an objective function that the boosting
algorithm were minimizing at each iteration. This is indeed the case. Let H,,(x) be the
combined hypothesis resulting from m boosting iterations:

Hp(x) = a1hi(x) 4+ ... + Gphipn(X) (4)
We’d like you to show that

J(H,,) = log (Z exp{—y,-Hm(xi)}) (5)

serves as an objective function for the boosting algorithm. In other words, we claim that
every time we add a new component hypothesis to the combined classifier H,,(x), we
decrease the objective.

3. Show that J(H,,) > J(Hy41), where
Hopi1(x) = Hin(X) + G g1 fim 1 (%), (6)

hm+1(X) is the new component hypothesis, and é&,41 is optimized as shown above.
(Hint: expand the weights p,, (i) and use the optimization of &,y1).

Having now put some effort into understanding the boosting algorithm, let’s explore a bit
how it behaves in practice. We have provided you with MATLAB code that finds and
evaluates (confidence rated) decision stumps. These are the hypothesis that our boosting
algorithm assumes we can generate. The relevant MATLAB files are “boost_digit.m”,
“boost.m”, “eval boost.m”, “find_stump.m”, “eval stump.m”. You’ll only have to make
minor modifications to “boost.m” and, a bit later, to “eval_boost.m” and “boost_digit.m”
to make these work.

4. Complete the weight update in “boost.m” and run “boost_digit” to plot the training
and test errors for the combined classifier as well as the corresponding training error
of the decision stump, as a function of the number of iterations. Are the errors what
you would expect them to be? Why or why not?

We will now investigate the classification margins of training examples. Recall that the
classification margin of a training point in the boosting context reflects the “confidence”
in which the point was classified correctly. You can view the margin of a training example
as the difference between the weighted fraction of votes assigned to the correct label and
those assigned to the incorrect one. Note that this is not a geometric notion of "margin”
but one based on votes. The margin will be positive for correctly classified training points
and negative for others.

5. Modify “eval_boost.m” so that it returns normalized predictions (normalized by the
total number of votes). The resulting predictions should be in the range [—1, 1]. Fill
in the missing computation of the training set margins in “boost_digit.m” (that is, the
classification margins for each of the training points). You should also uncomment
the plotting script for cumulative margin distributions (what is plotted is, for each
—1 < r < 1 on the horizontal axis, what fraction of the training points have a margin
of at least r). Explain the differences between the cumulative distributions after 4
and 16 boosting iterations.

Problem 2: support vector machines

Lagrange multipliers and optimization problems

We’ll present here a very simple tutorial example of using and understanding Lagrange
multipliers. Let w be a scalar parameter we wish to estimate and x a fixed scalar. We wish

to solve the following (tiny) SVM like optimization problem:
1
minimize §w2 subject to wx —1 >0 (7)

This is difficult only because of the constraint. We’d rather solve an unconstrained version
of the problem but, somehow, we have to take into account the constraint. We can do this
by including the constraint itself in the minimization objective as it allows us to twist the
solution towards satisfying the constraint. We need to know how much to emphasize the
constraint and this is what the Lagrange multiplier is doing. We will denote the Lagrange
multiplier by a to be consistent with the SVM problem. So we have now constructed a new
minimization problem (still minimizing with respect to w) that includes the constraint as
an additional linear term:

J(w; o) = %wQ

— a(wxr —1) (8)
The Lagrange multiplier a appears here as a parameter. You might view this new objective
a bit suspiciously since we appear to have lost the information about what type of constraint
we had, i.e., whether the constraint was wx — 1 > 0, we — 1 < 0, or wz — 1 = 0. How is
this information encoded? We can encode this by constraining the values of the Lagrange
multipliers:

wr—1>20 = a>0

wr—1<0 = a<0

wr—1=0 = «is unconstrained

Note, for example, that when the constraint is wx — 1 > 0, as we have above, large positive
values of a will encourage choices of w that result in large positive values for wxz — 1. This
is because in the above objective, J(w;«), we try to minimize —a(wz — 1) in addition to
w?/2; minimizing —a(wz — 1) is the same as maximizing a(wz — 1) or wz — 1 since a
is positive. Figure 1 tries to illustrate this effect. Assuming x = 1 we can plot the new
objective function as a function of w for different values of o. Larger values of « clearly
move the solution (minimizing w) towards satisfying w—1 > 0 (we assume here that z = 1).
Based on the figure we can see that setting a = 1 produces just the right solution, i.e.,
w* = 1, which satisfies the constraint wx —1 > 0 (when x = 1) with minimal distortion of
the original objective. There’s no reason to consider negative values for « since they would
push the solution away from satisfying our inequality constraint.

Effectively what we are doing here is solving a large number of optimization problems,
once for each setting of the Lagrange multiplier . Indeed, we can express the solution (the
minimizing w) as a parametric function of a:

0
5 (w;) =w — ax 9)
meaning that w! = ax. We could now find the setting of o such that the constraint

wix —1 > 0 is satisfied. There are multiple answers to this since larger values of o would

4

Figure 1: J(w;a) as a function of w for different values of a. The minimizing w values are
indicated with dashed line segments. x was set to 1.

better satisfy the constraint. Finding the smallest (non-negative) a for which the constraint
is satisfied would in this case produce the right solution (one corresponding to the minimal
change of the original problem).

We can proceed a bit more generally, however, the way we handled the quadratic optimiza-
tion problem for SVMs. Let’s insert our solution w?, back into the objective function:

* *) 2 * 1 2 2 1 2
J(wia) = —(wh) —a(wirx—1) = §(ax) —alar®—1)=a— é(a:c) (10)
The result, which we denote as J(«), is a function of the Lagrange multiplier « only. Let’s
understand this function a bit better. In Figure 1, the values of the objective at the dashed
lines correspond exactly to J(w; «) or J(«), evaluated at o = 0,1,2. Isn’t it strange that
the right solution (a = 1) appears to yield the maximum of J(«)? This is a very useful
property. Let’s verify this by finding the maximum of J(«) a bit more formally:

J@) = a— j(ary (1)
d 2 _ o
%J(a) = l-az"=1—-w,x=0 (12)

where we have used our previous result w} = ax. So, the constraint is satisfied with equality
at the maximum of J(«). More rigorously, since a > 0 in our setting, the maximum is
obtained either at & = 0 or at the point where 1 — w)x = 0. We can express this more
concisely by saying that their product vanishes, i.e., a(wiz — 1) = 0 at the optimum. This
is generally true, i.e., either the Lagrange multiplier is not used and o« = 0 (the constraint is
satisfied without any modification) or the Lagrange multiplier is positive and the constraint
is satisfied with equality.

The remaining question for us here is why

maximize o — 5(041:)2 subject to a >0 (13)

is any better than the problem we started with. The short answer is that the constraints
here are very simple non-negativity constraints that are easy to deal with in the optimiza-
tion. In the SVM context, we have another reason to prefer this formulation.

Examples of SVM training

We provided a skeleton for a SVM training routine trainsvm.m. The routine takes as input
the training set, a constant C' which will be an upper bound on the Lagrange multipliers,
and a specification for a kernel function. Your first task is to complete this routine. Two
parts of the routine are missing.

First, you should set up and solve the quadratic programming problem:

.. 1
minimize 5 Z oYy K (%, %) — Z Qi

.3

subject to:) . a;y; = 0 and for all 7, 0 < a; < C. Solve the quadratic programming using
the MATLAB routine quadprog. (Note that in lecture we saw this as a maximization
problem. MATLAB’s quadprog solves quadratic minimization problems, and so we changed
the sign of the objective function to get an equivalent minimization problem).

Next, add code to calculate the bias term wy. We have already provided code for finding
vectors that lie on the margin (note that we account for numeric inaccuracies by ignoring
« values very close to zero or to C'). Although it is enough to use one of these input vectors
for calculating wg, in order to increase accuracy, we will calculate wy using each one of
these input vectors separately, and then take wy to be the median of all the calculated
values (all of which should theoretically be the same).

Note that the routine also returns a list of the support vectors, and the vectors that lie
exactly on the margin.

1. Why do we use only training vectors x; with 0 < a; < C' for calculating wq 7
2. Complete the routine trainsvm.m.

3. Write a routine svmpred.m that classifies a set of input vectors based on a specified
SVM classifier. The routine should take as input a matrix of input vectors, and the
specifications of the SVM classifier. You may use the provided skeleton.

In studying SVM training, it will be useful to plot the decision boundary, the margin,
and the support vectors. The provided routine plotsvm2d.m does just that. The rou-
tine takes as input the training set, the lists of support and margin vectors, the name
of the prediction function (which will probably be svmpred), and the classifier speci-
fications to be passed to the prediction function. (If you deviated from the provided
skeleton of svmpred.m, you might need to change plotsvm2d.m appropriately).

10.

11.

The example data sets used in this question can be found in the file svmexample .mat,
and can be read using:

>> load svmexample

. We start with a simple example, given in trainlx, trainly. Use the routines above

to train a SVM using a linear kernel function K(x;,%3) = (1 4+ x]x3) (note the
provided polyK.m), and without bounding «; from above. Turn in the plot created
by plotsvm2d.m.

. Why is it not necessary to bound the values of a; from above in this case ?

. What is the classification margin ? (Explain how you calculated it, providing any

relevant MATLAB code)

We now move on to a slightly more complex data set given in train2x, train2y.
This time it is necessary to bound the values of «; by some finite C.

In order to understand what happens when we do not impose such a bound, try
bounding with increasingly higher constants C' and plot the value of the quadratic
programming objective function as a function of C' (turn in this plot). Why can we
not solve the quadratic optimization problem when the values of «; are unbounded ?

Recall that we are using Lagrange multipliers to solve a minimization problem on
the weights w, where we would like to minimize ||w||? subject to y;(w’x; +wg) > 1
for all training examples 7. In this case, no weight vector satisfies all the constraints.
How is this addressed by bounding the Lagrange multipliers 7

Train a SVM using the a linear kernel, imposing a bound of C' = 5. Turn in the
plotsvm2d plot. How many support vectors are there 7 How many training points
are misclassified 7 How many training points do not satisfy the SVM constraints
yi(w'x; +wp) > 17

In order enrich the space of allowable classifiers, we would like to use a kernel function
representing a more complex feature space. Try training a SVM, on the same example
data, using polynomial kernels of the form (1+xTx,)P, with various settings of p, and
look at the resulting graphs (no need to turn them in). What is the lowest degree
under which the training set is separable 7

|xq x5 |2

Also try using the Gaussian kernel e=~ 2 (given in expK.m).

Note that in many of the graphs you produced, the graphical margin, as it appears
in the graphs, is not uniform as with the linear kernel: it is narrower in some areas
and wider in others. Why does this happen ?

12. Even if the training set is separable, it is sometimes useful to set a bound on the
values of ;. Train a SVM using a fourth degree kernel (1 + x7x3)*, once without a
bound, and once with a bound C' = 2. Turn in both resulting graphs, and the margin
implied by the SVM weights (i.e. the classification margins for those training points
satisfying the SVM constraints).

13. What is the affect of imposing a low value for C' ? In this example, what happened
when C' was set to two 7

14. Using the training data train3x, train3y, investigate training a SVM with different
kernels and different values of C. Is the training set separable using a Gaussian
kernel 7 Do you think the classification given by a SVM with a Gaussian kernel
would generalize well 7

Problem 3: VC-dimmeniosality

In this problem, we will investigate the VC-dimension of various sets of classifiers. In this
context, a classifier is a function from some input space to the binary class labels +1,—1.
A classifier can also be described as a subset of the input space which gets the label +1.
For example, a linear classifier in the plane R?, can be described by a half-plane. For
this reason, we can discuss the family of linear classifiers as the set of all half-planes (and
possibly also the plane itself and the empty set).

We say that a class (i.e. set) H of classifiers shatters a set of points X = {zy,x9,...,2,}
if we can classify the points in X in all possible ways. More precisely, for all 2™ possible
labeling vectors y1, ya, . .., yn € {—1, 1}", there exists a classifier h € H such that h(x;) = y;
for all 7. For any possible labelings of the points, there has to be a classifier in our set that
reproduces those labels. Using the set notation for classifiers, this means that for any subset
X’ € X (indicating the subset of points labeled +1), there exist a classifier h € H such
that X Nh = X’ (the set of points for which h assigns label +1 includes X’ but not the rest
of X). It is important to understand that shattering is a property of a set of classifiers—
not of a single classifier (a single classifier cannot even shatter a single point).

The VC-dimension of a set ‘H of classifiers is the size of the largest set X that can be
shattered by H.

We first analyze the VC-dimension of the class of axis-parallel rectangles in the plane. That
is, a classifier is defined in terms of an axis-parallel rectangle, and classifies points inside
the rectangle as positive, and points outside of it as negative. More formally (or perhaps
just using more notation), a classifier belongs to this class if it is specified by the left, right,
top and bottom coordinates and

+1 Hl<zm<randb<azy <t
—1 Otherwise

hl,r,t,b(xl, 5102) = {

Or written as a set:
higip = {(x1,22)[l <2y <7rand b<ay <t}
And the class of axis-parallel rectangles is
Hyeet = {hirap|l <7 and b <t}

which is just the set of all axis-parallel rectangles. (Your answers need not use such formal
notation)

1. Find a set of four points that can be shattered by the class H,.. of axis-parallel
rectangles. That is, specify four points, and show how for all 16 possible subsets
(each in turn specifying the points labeled +1), you can find a rectangle that captures
exactly this subset.

2. Prove that no set of five points can be shattered by H,.;. The claim here is that
for any set of five points, there exists a labeling that cannot be obtained with an
axis-parallel rectangle. Conclude that the VC-dimension of H,.. is exactly four.

Now consider classification of points on the one-dimensional line R? using d-degree
polynomials as discriminant functions. These are linear classifiers with basis functions
2% k =1,...,d. Any classifier in this class has the form hy(z) = sign(wg + w1z +
wox? + ... + wyz?). The set of all such classifiers is

Hy = {hyw,w € R

3. (Optional) Prove that the VC-dimension of H, is d + 1.

As mentioned in class, this results extends to more general types of basis functions.
Consider a class H of classifier that can all be written as hy(x) = sign(wo+w1¢1(x)+
Waha(X) + -+ + wada(X) + Prixea(x)) for some fixed set of basis functions (by fized
basis functions we mean that the basis functions are the same for all classifiers, and
the classifiers differ only in their weight). Note that we also allow a special term
Gfixed (X), for which we cannot vary the weight. Regardless of the basis functions, H
has a VC-dimension of at most d+1. In general, if the basis functions are independent
(i.e. no basis function is a function of other basis functions), and all weight vectors
are allowed, the VC-dimension will be exactly d + 1.

4. Determine the VC-dimension of each of the following classes, by considering them as
linear discriminants with specific basis functions. Briefly explain your reasoning in
each case.

(a) Circles in the plane. (Hint: use the basis-function formulation only as an upper

bound).

(b)
()

(d)

(Optional) Ellipsoids in the plane.

(Classifiers representing decision regions of 2-component Gaussian mixture mod-
els in the plane. (Hint: rewrite the class posterior as He;(x) and use z(x) as a
discriminant function).

(Optional) Classifiers representing decision regions of 2-component Gaussian

mixture models in R?.

5. In this question we will explore the VC-dimension of decision stumps. Recall that
a stump classifier h;,; in R? is specified by an axis-parallel half-space: Riap =
{(z1,9,...,2,)|ax; < b} (a can always be taken to be +1 or —1).

(a)

(Optional) Consider a d = 2° dimensional space. Suggest a set of § point in
R4 = R that can be shattered by stumps, and show how it can be shattered.
Conclude that the VC-dimension of stumps in R? is at least |[log, d] (i.e. logd
rounded down to the nearest integer).

For any set of n points in R? show that the stumps can only classify the n
points in at most 2dn different ways. That is, there are at most 2dn different
labeling on the points which are attainable using stump classifiers. (Hint: count
the number of possible classifications using stumps on a specific axis)

Use the above bound to show that the VC-dimension of stumps is at most
2(log, d + 1). (Hint: use the fact that log,n < n/2 and so n — logyn > n/2)

Combining the results, we see that the VC-dimension of stumps is roughly log d
(more formally, it is ©(logd): for large enough d, it differs from logd only by a
multiplicative constant).

Although the VC-dimension of stumps is fairly low, combining stumps, as we
did in AdaBoost, is much more expressive. A linear combination of m stumps
is a classifier given by h(z) = sign(aihy + ashs + -+ + ahy,), where h; are
decision stumps, and «a,,, € R are their corresponding weights. We will focus on
linear combinations of stumps on the one-dimensional line R.

Note that this is not a linear combination of fixed basis functions, since the
stumps h; vary from from classifier to classifier.

Show how m/2 points in R can be shattered by convex combinations of m
stumps. (Hint: for each point use a combination of two stumps that classifies
the point correctly, and is ambivalent on all other points). State the resulting
bound on the VC-dimension of convex combinations of m stumps in the one-
dimensional line.

(Optional) For m+2 points in R, show a specific labeling that cannot be attained
by a convex combination of m stumps. State the resulting bound on the VC-
dimension of convex combinations of m stumps in the one-dimensional line.

10

(f) (Optional) Bound the VC-dimension of a convex combination of m stumps in
higher dimensions.

Now consider sinusoidal classifiers over the real line R. A sinusoidal classifier h,, is
specified by:
h(z) = sign(sin(wx))

And the class of sinusoidal classifiers contains all such classifiers:

Hsin = {hw|w > 0}

. (Optional) Consider a set of n points z; = 47" for i = 1,...,n. Show how this set of
points can be shattered by Hg;,.

. What is the VC-dimension of Hg, ? (You may use the previous question, even if you
did not answered it)

11

