
6.867 Machine learning and neural networks

Problem set 3

Deadline: November 2, 11am in recitation

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). You are encouraged to think about,
and turn in, answers to questions marked “optional”— they will be read and corrected, but
a grade will not be recorded for them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write
your name on the top of every page.

Problem 1: Boosting

This question is about AdaBoost, the simple boosting algorithm presented in the lectures.
We assume that there is a method unknown to us that produces a component (weak)
hypothesis h(x) in response to a weighted training set. The resulting weak classifier should
do at least a bit better than random guessing on the weighted training set it was trained
on. We make no assumptions about how well it does on other possibly differently weighted
training sets.

Let D = {(x1, y1) . . . , (xn, yn)} be the training set of examples xi and binary (±1) labels
yi. We denote the weights on the training examples at the beginning of the kth boosting
iteration as pk(1), . . . , pk(n), where

∑n
i=1 pk(i) = 1. Unlike in the lecture, the component

hypotheses h(x) can produce a real valued output (confidence rated classifiers). The sign
of the output indicates the label and the magnitude specifies a measure of “confidence” in
the classification decision. So, for example, h(x) = 10 would be interpreted as a relatively
confident prediction of label 1.

1

Now, starting with equal weights p1(i) = 1/n, AdaBoost generates a sequence of hypotheses
h1(x), . . . , hm(x), where each hk(x) was trained with a different set of example weights.
After having generated a hypothesis hk(x) in response to weights pk(i) at the kth iteration,
the example weights are updated according to

pk+1(i) = c · pk(i) exp(−α̂kyihk(xi)), i = 1, . . . , n (1)

where c is the normalization constant ensuring that
∑n

i=1 pk+1(i) = 1 and α̂k gives the
votes that we assign to the new component classifier hk(x). We would like to assign these
votes so that the new component classifier hk(x) is at chance performance relative to the
new weights pk+1(i). One way to express this is as follows:

n∑
i=1

pk+1(i)yihk(xi) = 0 (2)

1. Show that if hk(xi) generates only binary ±1 outputs, then the above condition
corresponds to requiring that the training error is exactly 0.5 relative to the new
weights

Answer: In the sum
∑n

i=1 pk+1(i)yihk(xi), let P be the set of i for which pk+1(i) is
multiplied by +1, and Q be the set of i for pk+1(i) is multiplied by −1. Then since∑n

i=1 pk+1(i)yihk(xi) = 0, we have
∑

i∈P pk+1(i) =
∑

j∈Q pk+1(j). Also, since∑n
i=1 pk+1(i) = 1, we have

∑
i∈P pk+1(i) +

∑
j∈Q pk+1(j) = 1, so

∑
i∈P pk+1(i) =

1
2
. But,

∑
i∈P pk+1(i) =

∑
hk(xi)=yi

pk+1(i), so the training error of hk relative to

pk+1 is 1
2
.

Scoring: 4 points

Things are a bit different here since the component classifier can generate real valued
outputs. We can view the condition instead as a way of decorrelating the predictions and
the labels relative to the new weights.

2. Show that if we choose α̂k as the minimizing argument of

J(α) = log

(
n∑
i=1

pk(i) exp{−αyihk(xi)}

)
(3)

we will indeed ensure that the decorrelation condition (2) holds for the new weights.
(Hint: Do not attempt to compute α̂k. Instead, set the derivative to zero and use the
resulting equation, which α̂k must satisfy, in order to show (2) is satisfied.

2

Answer: Let α̂k be the minimizing argument of J(α) above, then J ′(α̂k) = 0.
Taking the derivative of J , we get:

0 =
∂

∂α̂k
log

(
n∑
i=1

pk(i) exp{−α̂kyihk(xi)}

)

=

∑n
i=1 pk(i)

∂
∂α
e−α̂kyihk(xi)∑n

i=1 pk(i)e
−α̂kyihk(xi)

= −
∑n

i=1 pk(i)yihk(xi)e
−α̂kyihk(xi)∑n

i=1 pk(i)e
−α̂kyihk(xi)

= −
n∑
i=1

pk(i)e
−α̂kyihk(xi)∑n

j=1 pk(j)e
−α̂kyjhk(xj)

yihk(xi)

Matching this with the definition of the weights pk+1(i) given in (1), and noticing
that the denominator is exactly the correct normalization constant 1/c:

= −
n∑
i=1

pk+1(i)yihk(xi)

This is the desired correlation equality.

Scoring: 5 points

This should look a bit suspicious... as if there were an objective function that the boosting
algorithm were minimizing at each iteration. This is indeed the case. Let Hm(x) be the
combined hypothesis resulting from m boosting iterations:

Hm(x) = α̂1h1(x) + . . .+ α̂mhm(x) (4)

We’d like you to show that

J(Hm) = log

(
n∑
i=1

exp {−yiHm(xi)}

)
(5)

serves as an objective function for the boosting algorithm. In other words, we claim that
every time we add a new component hypothesis to the combined classifier Hm(x), we
decrease the objective.

3. Show that J(Hm) ≥ J(Hm+1), where

Hm+1(x) = Hm(x) + α̂m+1hm+1(x), (6)

hm+1(x) is the new component hypothesis, and α̂m+1 is optimized as shown above.
(Hint: expand the weights pm(i) and use the optimization of α̂m+1).

3

Answer: Denote by Zk+1 the normalization constant 1
c

in (1):

Zk+1 =
∑
i

pk(i)e
−α̂kyihk(xi)

so that (1) can be rewritten as:

pk+1(i) =
1

Zk+1

pk(i)e
−α̂kyihk(xi).

Unrolling this recursive definition of the weights yields:

pm+1(i) =
1

Zm+1

pm(i)e−α̂myihm(xi)

=
1

Zm+1

1

Zm
pm−1(i)e−α̂m−1yihm−1(xi)e−α̂myihm(xi)

= · · · =
m+1∏
k=2

1

Zk
p1(i)

m∏
k=1

e−α̂kyihk(xi)

initially p1(i) = 1
n

, hence:

=
e−yi

∑m
k=1 α̂khk(xi)

n
∏m+1

k=2 Zk

noticing that the sum in the exponent corresponds to the combined classifier Hm:

=
e−yiHm(xi)

n
∏m+1

k=2 Zk

We now note that
∑

i pm+1(i) = 1, and thus:

0 = log
∑
i

pm+1(i) = log

(∑
i

e−yiHm(xi)

n
∏m+1

k=2 Zk

)

= log

(∑
i

e−yiHm(xi)

)
−

m+1∑
k=2

logZk − log n

= J(Hm)−
m+1∑
k=2

logZk − log n

Noting that logZk+1 = J(α̂k) we can rewrite J(Hm) as:

J(Hm) = log n+
m∑
k=1

J(α̂k)

4

Consequently, J(Hm+1) = J(Hm) + J(α̂m+1). Noting that α̂m+1 was chosen to
minimize J :

J(α̂m+1) ≤ J(α) For any α

J(α̂m+1) ≤ J(0)

= log

(
n∑
i=1

pm(i)e−0yihm(xi)

)

= log

(
n∑
i=1

pm(i)e0

)
= log

n∑
i=1

pm(i)

= log 1 = 0

Hence J(Hm+1) ≤ J(Hm).

Scoring: 6 points

Having now put some effort into understanding the boosting algorithm, let’s explore a bit
how it behaves in practice. We have provided you with MATLAB code that finds and
evaluates (confidence rated) decision stumps. These are the hypothesis that our boosting
algorithm assumes we can generate. The relevant MATLAB files are “boost digit.m”,
“boost.m”, “eval boost.m”, “find stump.m”, “eval stump.m”. You’ll only have to make
minor modifications to “boost.m” and, a bit later, to “eval boost.m” and “boost digit.m”
to make these work.

4. Complete the weight update in “boost.m” and run “boost digit” to plot the training
and test errors for the combined classifier as well as the corresponding training error
of the decision stump, as a function of the number of iterations. Are the errors what
you would expect them to be? Why or why not?

Answer: The completed boost.m:

function [param] = boost(X,y,niter)

n = size(X,1);

p = ones(n,1)/n;

param = [];

for i=1:niter,

stump = find_stump(X,y,p);

h = eval_stump(X,stump); % stump predictions on the training set

% compute the number of votes to give to the new stump

epsilon = sum(p .* (y ~= h)) ;

alpha = 0.5*log((1-epsilon)/epsilon) ;

% update the weights

p = p .* exp(-alpha * y .* h) ;

5

p = p / sum(p) ; % don’t forget to normalize !

param = [param,struct(’stump’,stump,’alpha’,alpha)];

end;

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

Training error
Test error
Single−stump error

As can be seen in the figure, the training and test errors decrease as we perform
more boosting iterations. Eventually the training error reaches zero, but we do
not overfit, and the test error remains low (though higher than the training error).
However, no single stump can predict the training set well, and especially since
we continue to emphasize “difficult” parts of the training set, the error of each
particular stump remains high, and does not drop bellow about 1/3.

Scoring: 6 points for the execution, 3 points for the explanation

We will now investigate the classification margins of training examples. Recall that the
classification margin of a training point in the boosting context reflects the “confidence”
in which the point was classified correctly. You can view the margin of a training example
as the difference between the weighted fraction of votes assigned to the correct label and
those assigned to the incorrect one. Note that this is not a geometric notion of ”margin”
but one based on votes. The margin will be positive for correctly classified training points
and negative for others.

5. Modify “eval boost.m” so that it returns normalized predictions (normalized by the
total number of votes). The resulting predictions should be in the range [−1, 1]. Fill
in the missing computation of the training set margins in “boost digit.m” (that is, the
classification margins for each of the training points). You should also uncomment

6

the plotting script for cumulative margin distributions (what is plotted is, for each
−1 < r < 1 on the horizontal axis, what fraction of the training points have a margin
of at least r). Explain the differences between the cumulative distributions after 4
and 16 boosting iterations.

Answer: The completed eval boost.m:

function [H] = eval_boost(X,param);

[n,m] = size(X);

H = zeros(n,1); % combined predictions

totalalpha = 0; % Total weight of all votes

for i = 1:length(param),

H = H + param(i).alpha*eval_stump(X,param(i).stump);

totalalpha = totalalpha + param(i).alpha ;

end;

H = H/totalalepha ; % Normalize by the total vote weight

The completed boost digit.m:

load digit_x.dat;

load digit_y.dat;

digit_y = 2*digit_y-1;

load digit_x_test.dat;

load digit_y_test.dat;

digit_y_test = 2*digit_y_test-1;

E=[];

M=[];

for i=1:16,

param = boost(digit_x,digit_y,i);

yb = eval_boost(digit_x,param);

trainerr= mean(yb.*digit_y<=0);

% classification margins on the training set

% mar = a column vector of length length(digit_y), where

% mar(i) is the classification margin of the ith training point

mar = yb .* digit_y ;

M = [M,mar];

yb = eval_boost(digit_x_test,param);

testerr = mean(yb.*digit_y_test<=0);

E=[E;trainerr,testerr,param(i).stump.err];

7

end;

figure(1); plot(E);

legend(’Training error’,’Test error’,’Single-stump error’);

figure(2);

n = length(digit_y);

plot(sort(M(:,4)),(1:n)’/n,’:g’,sort(M(:,16)),(1:n)’/n,’-r’);

legend(’After four iterations’,’After sixteen iterations’);

(note that we also added code to add legends to the figures).

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
After four iterations
After sixteen iterations

The key difference between the cumulative distributions after 4 and 16 boosting
iterations is that the additional iterations seem to push the left (low end) tail of
the cumulative distribution to the right. To understand the effect, note that the
examples that are difficult to classify have poor or negative classification margins and
therefore define the low end tail of the cumulative distribution. Additional boosting
iterations concentrate on the difficult examples and ensure that their margins will
improve. As the margins improve, the left tail of the cumulative distribution moves
to the right, as we see in the figure.

Scoring: 4 points for the execution, 2 points for the explanation

8

Problem 2: support vector machines

Lagrange multipliers and optimization problems

We’ll present here a very simple tutorial example of using and understanding Lagrange
multipliers. Let w be a scalar parameter we wish to estimate and x a fixed scalar. We wish
to solve the following (tiny) SVM like optimization problem:

minimize
1

2
w2 subject to wx− 1 ≥ 0 (7)

This is difficult only because of the constraint. We’d rather solve an unconstrained version
of the problem but, somehow, we have to take into account the constraint. We can do this
by including the constraint itself in the minimization objective as it allows us to twist the
solution towards satisfying the constraint. We need to know how much to emphasize the
constraint and this is what the Lagrange multiplier is doing. We will denote the Lagrange
multiplier by α to be consistent with the SVM problem. So we have now constructed a new
minimization problem (still minimizing with respect to w) that includes the constraint as
an additional linear term:

J(w;α) =
1

2
w2 − α(wx− 1) (8)

The Lagrange multiplier α appears here as a parameter. You might view this new objective
a bit suspiciously since we appear to have lost the information about what type of constraint
we had, i.e., whether the constraint was wx − 1 ≥ 0, wx − 1 ≤ 0, or wx − 1 = 0. How is
this information encoded? We can encode this by constraining the values of the Lagrange
multipliers:

wx− 1 ≥ 0 ⇒ α ≥ 0
wx− 1 ≤ 0 ⇒ α ≤ 0
wx− 1 = 0 ⇒ α is unconstrained

Note, for example, that when the constraint is wx−1 ≥ 0, as we have above, large positive
values of α will encourage choices of w that result in large positive values for wx− 1. This
is because in the above objective, J(w;α), we try to minimize −α(wx − 1) in addition to
w2/2; minimizing −α(wx − 1) is the same as maximizing α(wx − 1) or wx − 1 since α
is positive. Figure 1 tries to illustrate this effect. Assuming x = 1 we can plot the new
objective function as a function of w for different values of α. Larger values of α clearly
move the solution (minimizing w) towards satisfying w−1 ≥ 0 (we assume here that x = 1).
Based on the figure we can see that setting α = 1 produces just the right solution, i.e.,
w∗ = 1, which satisfies the constraint wx− 1 ≥ 0 (when x = 1) with minimal distortion of
the original objective. There’s no reason to consider negative values for α since they would
push the solution away from satisfying our inequality constraint.

Effectively what we are doing here is solving a large number of optimization problems,
once for each setting of the Lagrange multiplier α. Indeed, we can express the solution (the

9

−3 −2 −1 0 1 2 3
−2

0

2

4

6

8

10

w

J(
w

;α
)

α = 2

α = 1

α = 0

Figure 1: J(w;α) as a function of w for different values of α. The minimizing w values are
indicated with dashed line segments. x was set to 1.

minimizing w) as a parametric function of α:

∂

∂w
J(w;α) = w − αx = 0 (9)

meaning that w∗α = αx. We could now find the setting of α such that the constraint
w∗αx− 1 ≥ 0 is satisfied. There are multiple answers to this since larger values of α would
better satisfy the constraint. Finding the smallest (non-negative) α for which the constraint
is satisfied would in this case produce the right solution (one corresponding to the minimal
change of the original problem).

We can proceed a bit more generally, however, the way we handled the quadratic optimiza-
tion problem for SVMs. Let’s insert our solution w∗α back into the objective function:

J(w∗α;α) =
1

2
(w∗α)2 − α(w∗αx− 1) =

1

2
(αx)2 − α(αx2 − 1) = α− 1

2
(αx)2 (10)

The result, which we denote as J(α), is a function of the Lagrange multiplier α only. Let’s
understand this function a bit better. In Figure 1, the values of the objective at the dashed
lines correspond exactly to J(w∗α;α) or J(α), evaluated at α = 0, 1, 2. Isn’t it strange that
the right solution (α = 1) appears to yield the maximum of J(α)? This is a very useful
property. Let’s verify this by finding the maximum of J(α) a bit more formally:

J(α) = α− 1

2
(αx)2 (11)

∂

∂α
J(α) = 1− αx2 = 1− w∗ax = 0 (12)

where we have used our previous result w∗α = αx. So, the constraint is satisfied with equality
at the maximum of J(α). More rigorously, since α ≥ 0 in our setting, the maximum is
obtained either at α = 0 or at the point where 1 − w∗ax = 0. We can express this more
concisely by saying that their product vanishes, i.e., α(w∗ax− 1) = 0 at the optimum. This

10

is generally true, i.e., either the Lagrange multiplier is not used and α = 0 (the constraint is
satisfied without any modification) or the Lagrange multiplier is positive and the constraint
is satisfied with equality.

The remaining question for us here is why

maximize α− 1

2
(αx)2 subject to α ≥ 0 (13)

is any better than the problem we started with. The short answer is that the constraints
here are very simple non-negativity constraints that are easy to deal with in the optimiza-
tion. In the SVM context, we have another reason to prefer this formulation.

Examples of SVM training

We provided a skeleton for a SVM training routine trainsvm.m. The routine takes as input
the training set, a constant C which will be an upper bound on the Lagrange multipliers,
and a specification for a kernel function. Your first task is to complete this routine. Two
parts of the routine are missing.

First, you should set up and solve the quadratic programming problem:

minimize
1

2

∑
i,j

αiαjyiyjK(xi,xj)−
∑
i

αi

subject to:
∑

i αiyi = 0 and for all i, 0 ≤ αi ≤ C. Solve the quadratic programming using
the MATLAB routine quadprog. (Note that in lecture we saw this as a maximization
problem. MATLAB’s quadprog solves quadratic minimization problems, and so we changed
the sign of the objective function to get an equivalent minimization problem).

Next, add code to calculate the bias term w0. We have already provided code for finding
vectors that lie on the margin (note that we account for numeric inaccuracies by ignoring
α values very close to zero or to C). Although it is enough to use one of these input vectors
for calculating w0, in order to increase accuracy, we will calculate w0 using each one of
these input vectors separately, and then take w0 to be the median of all the calculated
values (all of which should theoretically be the same).

Note that the routine also returns a list of the support vectors, and the vectors that lie
exactly on the margin.

1. Why do we use only training vectors xi with 0 < αi < C for calculating w0 ?

Answer: We know what the prediction wTx + w0 should be on points x
which are exactly on the margin, that is with the constraint yi(w

Tx +w0) ≥ 1
tightly satisfied.

Points that are loosely satisfied by the constraints, i.e. with yi(w
Tx+w0) >

1, will necessarily have their Lagrange multiplier equal to zero (since higher
Lagrange multipliers will hurt the objective function).

11

If we impose some limit C on the Lagrange multipliers, then if a point does
not satisfy the constraint, we would like to increase its Lagrange multiplier as
high as possible, and so its Lagrange multiplier will be equal to C.

Taking only points with Lagrange multipliers strictly between zero and C
ensures that all the points considered are on the margin (note that there might
still be margin vectors with Lagrange multipliers equal to zero or C, and we
will miss them).

Scoring: 2 points

2. Complete the routine trainsvm.m.

Answer: Here is the completed routine. Note that we also compute the
margin (which is requested in some of the questions).

function [a,w0,fval,supvecs,margvecs,margin] = trainsvm(x,y,C,...

kernalfunc,varargin)

if nargin<4

kernalfunc = ’polyK’;

end

if nargin<3

C = 1e+10; % should be inf. Set like this because of

end % bug with quadprog

n = size(x,1);

K = feval(kernalfunc,x,x,varargin{:});

[a,fval,exitflag] = quadprog(diag(y)*K*diag(y),-ones(n,1),...

[],[],y’,0,zeros(n,1),C*ones(n,1));

ay = a .* y;

eps = 0.001*max(a);

supvecs = find(a>=eps);

margvecs = find(a>=eps & a<=C-eps);

w0 = median(y(margvecs)-K(margvecs,:)*ay);

% Calculate the margin in feature space, which is 1/||w||

margin = 1/sqrt(ay’*K*ay) ;

Scoring: 6 points (not including the margin computation)

3. Write a routine svmpred.m that classifies a set of input vectors based on a specified
SVM classifier. The routine should take as input a matrix of input vectors, and the
specifications of the SVM classifier. You may use the provided skeleton.

Answer:

12

function [y,z] = svmpred(x,tx,ty,a,w0,kernalfunc,varargin)

if nargin<6

kernalfunc = ’polyK’;

end

z = feval(kernalfunc,x,tx,varargin{:})*(a.*ty)+w0;

y=sign(z);

Scoring: 5 points

In studying SVM training, it will be useful to plot the decision boundary, the margin,
and the support vectors. The provided routine plotsvm2d.m does just that. The rou-
tine takes as input the training set, the lists of support and margin vectors, the name
of the prediction function (which will probably be svmpred), and the classifier speci-
fications to be passed to the prediction function. (If you deviated from the provided
skeleton of svmpred.m, you might need to change plotsvm2d.m appropriately).

The example data sets used in this question can be found in the file svmexample.mat,
and can be read using:

>> load svmexample

4. We start with a simple example, given in train1x, train1y. Use the routines above
to train a SVM using a linear kernel function K(x1,x2) = (1 + xT1 x2) (note the
provided polyK.m), and without bounding αi from above. Turn in the plot created
by plotsvm2d.m.

Answer: 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
Example 1, linear kernal, unbounded C: margin=0.3464

Scoring: 1 point

5. Why is it not necessary to bound the values of αi from above in this case ?

13

Answer: The data set is separable, and so the dual problem is bounded. In-
creasing α to infinity will not better the objective function of the dual quadratic
programming.

Scoring: 2 points

6. What is the classification margin ? (Explain how you calculated it, providing any
relevant MATLAB code)

Answer: The margin, as computed by trainsvm.m above, is 0.3464.

Scoring: 3 points (including the explanation/code)

We now move on to a slightly more complex data set given in train2x, train2y.
This time it is necessary to bound the values of αi by some finite C.

7. In order to understand what happens when we do not impose such a bound, try
bounding with increasingly higher constants C and plot the value of the quadratic
programming objective function as a function of C (turn in this plot). Why can we
not solve the quadratic optimization problem when the values of αi are unbounded ?

Answer: Using the following routine:

function fvals = calcfvals(x,y,Cs,varargin)

fvals = zeros(size(Cs));

for i=1:length(Cs)

[a,w0,fvals(i),supvecs,margvecs,margin] = trainsvm(x,y,Cs(i),varargin{:});

end

We can generate the plot using:

>> Cs = 2*(0:12) ;

>> fvals = calcfvals(train2x,train2y,Cs) ;

>> plot(Cs,fvals) ;

We get the following plot:

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−12

−10

−8

−6

−4

−2

0
x 10

4

C (bound on Lagrange multipliers)

va
lu

e
of

 q
ua

dr
at

ic
 p

ro
gr

am

14

From this plot, we can see that the objective function continues to decreases
as the maximum value of the Lagrange multiplier increases. If the Lagrange
multiplier are not bounded, the value of the quadratic program is unbounded,
and there is no optimal solutions.

For comparison, consider the following plot of the objective function as a
function of C, for the linearly separable example one:

0 20 40 60 80 100 120 140 160 180 200
−4.5

−4

−3.5

−3

−2.5

C (bound on Lagrange multipliers)

va
lu

e
of

 q
ua

dr
at

ic
 p

ro
gr

am

Example 1 (separable)

In this case, the objective function initially decreases (it is always monoton-
ically non-increasing), but then reaches a lower bound, and does not change
further even as the bound C increases.

Scoring: 2 points for the plot, 2 points for the explanation

8. Recall that we are using Lagrange multipliers to solve a minimization problem on
the weights w, where we would like to minimize ‖w‖2 subject to yi(w

Txi + w0) ≥ 1
for all training examples i. In this case, no weight vector satisfies all the constraints.
How is this addressed by bounding the Lagrange multipliers ?

Answer: If some of the constraints are not satisfied, then there are i for
which yi(w

Tx + w0)− 1 < 0. The term αi
(
yi(w

Tx + w0)− 1
)

appearing in
our objective function would thus decrease as we increase αi. Bounding αi in
effect sets a limit as to how much having an unsatisfied constraint can influence
the objective function. Bounding the Lagrange multipliers, the dual objective
function becomes bounded.

Scoring: 2 points

9. Train a SVM using the a linear kernel, imposing a bound of C = 5. Turn in the
plotsvm2d plot. How many support vectors are there ? How many training points
are misclassified ? How many training points do not satisfy the SVM constraints
yi(w

Txi + w0) ≥ 1 ?

15

Answer: 0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8
Example 2, linear kernal, C=5: margin=0.7404

There are 26 support vectors, of which 23 do no satisfy the SVM constraints,
but only 12 are misclassified.

Scoring: 4 points, one for the plot, one for each number

10. In order enrich the space of allowable classifiers, we would like to use a kernel function
representing a more complex feature space. Try training a SVM, on the same example
data, using polynomial kernels of the form (1+xT1 x2)p, with various settings of p, and
look at the resulting graphs (no need to turn them in). What is the lowest degree
under which the training set is separable ?

Answer: The training data is separable using a fourth degree features.

Scoring: 1 point

16

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
Example 2, 3rd degree kernal, C=1e+10

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8
Example 2, 4th degree kernal, C=1e+10: margin=0.0434

Also try using the Gaussian kernel e−
|x1−x2|

2

2 (given in expK.m).

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
Example 2, Gaussian kernal (unit variance): margin=0.0229

11. Note that in many of the graphs you produced, the graphical margin, as it appears
in the graphs, is not uniform as with the linear kernel: it is narrower in some areas
and wider in others. Why does this happen ?

Answer: The margin is uniform in feature space. What we see in input space
is a non-linear transformation of feature space. This transformation does not
conserve the width of the margin.

Scoring: 2 points

12. Even if the training set is separable, it is sometimes useful to set a bound on the
values of αi. Train a SVM using a fourth degree kernel (1 + xT1 x2)4, once without a
bound, and once with a bound C = 2. Turn in both resulting graphs, and the margin

17

implied by the SVM weights (i.e. the classification margins for those training points
satisfying the SVM constraints).

Answer: Margin without a bound is 0.0434. With a bound of C = 2 it
increases to 0.74.

0 1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8
Example 2, 4th degree kernal, C=1e+10: margin=0.0434

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9
Example 2, 4th degree kernal, C=2: margin=0.7400

Scoring: 5 points: one for the plots, four for the margins and their calculation

13. What is the affect of imposing a low value for C ? In this example, what happened
when C was set to two ?

Answer: A low value of C decreases the importance of satisfying the con-
straints, relative to increasing the margin. We allow a few points to violate
the constraints (and two points to even be misclassified), but we increase the
margin more than ten-fold.

Scoring: 2 points

14. Using the training data train3x, train3y, investigate training a SVM with different
kernels and different values of C. Is the training set separable using a Gaussian
kernel ? Do you think the classification given by a SVM with a Gaussian kernel
would generalize well ?

Answer: The training set is separable using a Gaussian kernel, as are all
training sets (without repeated input values). Especially for small variances,
almost all training points are support vectors, and so we would not necessarily
expect the classification to generalize well.

Scoring: 1 point

18

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9
Example 3, Gaussian kernal, unit variance: margin=0.00017

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9
Example 3, Gaussian kernal, variance 0.1: margin=0.0428

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9
Example 3, Gaussian kernal, variance 0.1: margin=0.0428

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9
Example 3, Gaussian kernal, variance 1: margin=0.0000075

Problem 3: VC-dimmeniosality

In this problem, we will investigate the VC-dimension of various sets of classifiers. In this
context, a classifier is a function from some input space to the binary class labels +1,−1.
A classifier can also be described as a subset of the input space which gets the label +1.
For example, a linear classifier in the plane R2, can be described by a half-plane. For
this reason, we can discuss the family of linear classifiers as the set of all half-planes (and
possibly also the plane itself and the empty set).

We say that a class (i.e. set) H of classifiers shatters a set of points X = {x1, x2, . . . , xn}
if we can classify the points in X in all possible ways. More precisely, for all 2n possible
labeling vectors y1, y2, . . . , yn ∈ {−1, 1}n, there exists a classifier h ∈ H such that h(xi) = yi
for all i. For any possible labeling of the points, there has to be a classifier in our set that
reproduces those labels. Using the set notation for classifiers, this means that for any subset

19

X ′ ⊆ X (indicating the subset of points labeled +1), there exist a classifier h ∈ H such
that X ∩h = X ′ (the set of points for which h assigns label +1 includes X ′ but not the rest
of X). It is important to understand that shattering is a property of a set of classifiers–
not of a single classifier (a single classifier cannot even shatter a single point).

The VC-dimension of a set H of classifiers is the size of the largest set X that can be
shattered by H.

We first analyze the VC-dimension of the class of axis-parallel rectangles in the plane. That
is, a classifier is defined in terms of an axis-parallel rectangle, and classifies points inside
the rectangle as positive, and points outside of it as negative. More formally (or perhaps
just using more notation), a classifier belongs to this class if it is specified by the left, right,
top and bottom coordinates and

hl,r,t,b(x1, x2) =

{
+1 If l ≤ x1 ≤ r and b ≤ x2 ≤ t

−1 Otherwise

Or written as a set:

hl,r,t,b = {(x1, x2)|l ≤ x1 ≤ r and b ≤ x2 ≤ t}

And the class of axis-parallel rectangles is

Hrect = {hl,r,t,b|l < r and b < t},

which is just the set of all axis-parallel rectangles. (Your answers need not use such formal
notation)

1. Find a set of four points that can be shattered by the class Hrect of axis-parallel
rectangles. That is, specify four points, and show how for all 16 possible subsets
(each in turn specifying the points labeled +1), you can find a rectangle that captures
exactly this subset.

Answer: Consider four points forming a diamond. The following sixteen
rectangles classify the points in all possible ways:

20

Scoring: 3 points

2. Prove that no set of five points can be shattered by Hrect. The claim here is that
for any set of five points, there exists a labeling that cannot be obtained with an
axis-parallel rectangle. Conclude that the VC-dimension of Hrect is exactly four.

Answer: For any set of five points, take a left-most point, a right-most point,
a top-most point and a bottom-most point. Consider a labeling where these
(at most) four points are labeled ’+’, and the remaining point(s) are labeled ’-’
(note that there might be more than one remaining point if a single point is,
e.g. both topmost and leftmost). A rectangle containing these four extreme
points must have its left edge left of the left-most point, its right edge right of
the right-most point, its top edge above the top-most point and it bottom edge
beneath the bottom-most point. Hence, it must contain all points, including
those which we wish to label ’-’. This labeling is thus unachievable with axis-
parallel rectangles.

Following this, no five points can be shattered by axis-parallel rectangle.
Since we saw in the previous question how four points can be shattered, we
can conclude that the VC dimension is exactly four.

Scoring: 3 points

Now consider classification of points on the one-dimensional line Rd using d-degree
polynomials as discriminant functions. These are linear classifiers with basis functions

21

xk, k = 1, . . . , d. Any classifier in this class has the form hw(x) = sign(w0 + w1x +
w2x

2 + ...+ wdx
d). The set of all such classifiers is

Hd = {hw,w ∈ Rd+1}

3. (Optional) Prove that the VC-dimension of Hd is d+ 1.

Answer: Consider the points {1, 2, . . . , d+1}. For any labeling (y1, y2, . . . , yd+1),
we will search for a degree d polynomial p such that p(i) = yi for all i (where
yi is +1 or −1). We know such a polynomial exists, since for any designated
target values on d+ 1 input values, there exists a unique degree d polynomial
that satisfies all the constraints. This polynomial achieves the desired labeling.
Since this is true for any labeling, the d + 1 points can be shattered (in fact,
any d+ 1 points can be shattered).

We will now show that no d+2 points can be shattered. For any d+2 points,
considering a desired labeling in which the points are assigned alternating labels
(i.e. each to consecutive points on the real line have different labels). The
polynomial must cross zero between any two points, hence it must be equal to
zero in at least d+1 different places. But a d degree polynomial that has d+1
roots must be the equal to zero everywhere, and such a polynomial surely does
not achieve the desired labeling (in fact, it does not achieve any labeling).

As mentioned in class, this results extends to more general types of basis functions.
Consider a class H of classifier that can all be written as hw(x) = sign(w0 +w1φ1(x)+
w2φ2(x) + · · · + wdφd(x) + φfixed(x)) for some fixed set of basis functions (by fixed
basis functions we mean that the basis functions are the same for all classifiers, and
the classifiers differ only in their weight). Note that we also allow a special term
φfixed(x), for which we cannot vary the weight. Regardless of the basis functions, H
has a VC-dimension of at most d+1. In general, if the basis functions are independent
(i.e. no basis function is a function of other basis functions), and all weight vectors
are allowed, the VC-dimension will be exactly d+ 1.

4. Determine the VC-dimension of each of the following classes, by considering them
as linear discriminant with specific basis functions. Briefly explain your reasoning in
each case.

(a) Circles in the plane. (Hint: use the basis-function formulation only as an upper
bound).

Answer: It is easy to see how to shatter three points (e.g. in an equilateral
triangle) using circles.

In order to prove that the VC dimension is not more than three, note
that a point (x1, x2) lies inside a circle of radius r with center (a, b) iff:

(x1 − a)2 + (x2 − b)2 ≤ r2

22

Or equivalently:

x2
1 − 2ax1 + a2 + x2

2 − 2bx2 + b2 − r2 ≤ 0

Collecting terms we get:

(−2a)x1 + (−2b)x2 + (a2 + b2 − r2)1 + (x2
1 + x2

2) ≤ 0

We can now rewrite the above as a weighted combination of three features,
plus a fixed-weight feature:

sign (w1φ1(x1, x2) + w2φ2(x1, x2) + w3φ3(x1, x2) + φfixed(x1, x2))

where:

w1 = −2a φ1(x1, x2) = x1

w2 = −2b φ2(x1, x2) = x2

w3 = a2 + b2 − r2 φ3(x1, x2) = 1

φfixed(x1, x2) = x2
1 + x2

2

All circle classifiers can be written as such a weighted combination of these
features, and thus the VC-dimension of circle classifiers is at most three.
Note that since not all weights are possible (since r2 must be positive),
we cannot conclude from this alone that the VC-dimension is in fact three,
and not lower. We can conclude this from the shattering of three points,
establishing a VC-dimension of exactly three.

Scoring: 4 points

(b) (Optional) Ellipsoids in the plane.

Answer: Using similar arguments, the VC-dimension of axis parallel el-
lipses is four, and of general ellipses it is five.

(c) Classifiers representing decision regions of 2-component Gaussian mixture mod-
els in the plane. (Hint: rewrite the class posterior as 1

1+ez(x)
and use z(x) as a

discriminant function).

Answer: We already saw how the posterior class probabilities in a Gaus-
sian mixture model is of the form 1

1+ezx
, where z(x) is a quadratic function.

In fact, we saw how for any quadratic function z(·), there exists a Gaussian
mixture model with a posterior of 1

1+ezx
. Based on the posterior, the class

decision criterion is 1
1+ezx

< 0.5, which is equivalent to z(x) < 0. Gaus-
sian mixture classifiers are thus exactly the classifiers given by the sign of
quadratic functions. The number of quadratic features in the plane is six:
1, x1, x

2
1, x2, x

2
2, x1x2. Thus, the VC-dimension of Gaussian mixture models

in the plane is six.

23

Scoring: 4 points

(d) (Optional) Classifiers representing decision regions of 2-component Gaussian
mixture models in Rd.

Answer: Using a similar argument, and counting the number of quadratic
features in Rd: one bias term, d linear features, d squared features,

(
d
2

)
quadratic features, for a combined VC-dimension of 1 + 2d+ d(d− 1)/2 =
1 + 3

2
d+ 1

2
d2.

Note that this is less then the straight-forward counting of parameters
in the standard parameterization of Gaussian mixture models through pri-
ors, means and the covariance matrix. Following this count we would get
2 parameters from the priors, d from each mean, and d2 from each co-
variance matrix, for a combined total of 2 + 2d + 2d2. This is certainly
an overcounting, since we know, for example, that the priors must sum up
to one (hence it is enough to specify a single prior) and that the covari-
ance matrix must be symmetric. But even after accounting for this, we are
still left with 1 + 2d + d(d + 11)/2 = 1 + 5

2
d + 1

2
d2 parameters. But we

know there are still more redundancies in the parameterization, since the
covariance matrix must be positive definite, and there are many different
Gaussian mixture models sharing the same posterior, as well as different
posteriors sharing the same decision boundary. The VC-dimension provides
for a way of accounting for these further redundancies.

5. In this question we will explore the VC-dimension of decision stumps. Recall that
a stump classifier hi,a,b in Rd is specified by an axis-parallel half-space: hi,a,b =
{(x1, x2, . . . , xn)|axi ≤ b} (a can always be taken to be +1 or −1).

(a) (Optional) Consider a d = 2δ dimensional space. Suggest a set of δ point in
Rd = R(2δ) that can be shattered by stumps, and show how it can be shattered.
Conclude that the VC-dimension of stumps in Rd is at least blog2 dc (i.e. log d
rounded down to the nearest integer).

Answer: Each of the d coordinates will correspond to one of the 2δ = d
possible labeling of our δ points. We will set value of the ith coordinate of
the jth point, to +1 or −1 according to the labeling of the jth point under
the ith labeling. To achieve any labeling, all that is needed is a stump
xi > 0 along the relevant coordinate i.

(b) For any set of n points in Rd, show that the stumps can only classify the n
points in at most 2dn different ways. That is, there are at most 2dn different
labeling on the points which are attainable using stump classifiers. (Hint: count
the number of possible classifications using stumps on a specific axis)

Answer: For each for the i coordinates, consider the ordering σ =
(x1,x2, . . . ,xn) of points along that coordinate. Stumps along this co-
ordinate can only separate between some prefix of σ and the corresponding

24

suffix. There are n + 1 prefixes (including the empty prefix and the com-
plete set of points) and each one can either be classified as +1 or as −1,
for a total of at most 2(n+ 1) classifications along this coordinate (not all
of these might be possible, if there are repeated values in this coordinate
among the n points). But note that classifying the empty prefix as +1
is equivalent to classifying the complete prefix as −1, and equivalently for
classifying the empty prefix as −1 and the complete prefix as +1, reducing
the number of of possible classifications to at most 2n.

This analysis can be applied to each of the d coordinates, and so the
total number of classifiers is at most 2dn (we are overcounting, since stumps
along different coordinates may lead to the same classification).

Scoring: 2 points

(c) Use the above bound to show that the VC-dimension of stumps is at most
2(log2 d+ 1). (Hint: use the fact that log2 n < n/2 and so n− log2 n > n/2)

Answer: If the VC-dimension is n, then there must be a set of n points
that is shattered. For this set of n points, all 2n labeling must be achievable.
But using the above bound we can only classify n points in at most 2dn
different ways, hence:

2n ≤ 2dn

n ≤ log2(2dn) = 1 + log2 d+ log2 n
n

2
< n− log2 n ≤ 1 + log2 d

n < 2(log2 d+ 1)

Scoring: 4 points

Combining the results, we see that the VC-dimension of stumps is roughly log d
(more formally, it is Θ(log d): for large enough d, it differs from log d only by a
multiplicative constant).

Although the VC-dimension of stumps is fairly low, combining stumps, as we
did in AdaBoost, is much more expressive. A linear combination of m stumps
is a classifier given by h(x) = sign(α1h1 + α2h2 + · · · + αmhm), where hj are
decision stumps, and αm ∈ R are their corresponding weights. We will focus on
linear combinations of stumps on the one-dimensional line R.

Note that this is not a linear combination of fixed basis functions, since the
stumps hj vary from from classifier to classifier.

(d) Show how m/2 points in R can be shattered by convex combinations of m
stumps. (Hint: for each point use a combination of two stumps that classifies
the point correctly, and is ambivalent on all other points). State the resulting
bound on the VC-dimension of convex combinations of m stumps in the one-
dimensional line.

25

Answer: For each point xi which should be positively classified, consider
two stumps given by x ≤ xi + ε and x ≥ xi− ε, for ε small enough so that
there is no other point within ε of xi. Similarly, if xi should be negatively
classified, consider the two stumps x ≥ xi + ε and x ≤ xi − ε. Let the
weights of all stumps be equal. The votes of the two xi stumps cancel out
when voting on any other point xj (j 6= i), and so the total classification
of any point xi is exactly the (common) vote of its two stumps on it, which
is correct.

Since we can shatter a set of m/2 points, the VC-dimension of a convex
combination of m stumps is at least m/2.

Note that we can also show how to shatter m points using m stumps,
and thus show a lower bound of m on the VC-dimension. We can shatter
m points by having a stump between each two consecutive points with
non-agreeing labels, with the stump classifying these two points correctly.
This will require at most m−1 stumps, all of which will have equal weight,
and result in a combined weighted vote of either −1/0 or 0/1 on points
that should be classified −1/+ 1. By introducing an additional stump that
classifies all points the same way, and has half the weight as the rest of the
stumps, we can get correct classification on all points.

Scoring: 4 points: 3 for the example, 1 for the bound of m/2.

(e) (Optional) For m+2 points inR, show a specific labeling that cannot be attained
by a convex combination of m stumps. State the resulting bound on the VC-
dimension of convex combinations of m stumps in the one-dimensional line.

Answer: A labeling with alternating labels cannot be attains, since there
must be at least one stump between every pair of points, for a total of at
least m+ 1 stumps.

(f) (Optional) Bound the VC-dimension of a convex combination of m stumps in
higher dimensions.

Now consider sinusoidal classifiers over the real line R. A sinusoidal classifier hω is
specified by:

hω(x) = sign(sin(ωx))

And the class of sinusoidal classifiers contains all such classifiers:

Hsin = {hω|ω > 0}

6. (Optional) Consider a set of n points xi = 4−i for i = 1, . . . , n. Show how this set of
points can be shattered by Hsin.

Answer: Suppose we are given any labeling for the n points y1, . . . , yn. Then
we set

ω = π

n∑
i=1

(1− yi)4i

2
= π

∑
i:yi=−1

4i

26

Suppose k is s.t. xk = −1. Then we have ωxk = ω4−k = π(α+ 1 + β) Here,

α =
∑

i:yi=−1∧i>k

4i−k

β =
∑

i:yi=−1∧i<k

4i−k

The 1 term comes from the cancellation of 4−k with one of the 4i terms in the
sum. Note that α is even, and β < 1. Thus, ωxi = γ + β, where γ is odd.
Thus, sign(sin(ωxk)) = −1 = yk. For k s.t. xk = 1, we will get ωxk = γ+β,
where γ is even, and sign(sin(ωxk)) = 1 = yk. Thus, Hsin can shatter the n
points.

7. What is the VC-dimension of Hsin ? (You may use the previous question, even if you
did not answered it)

Answer: The VC-dimension is infinite, since for any n, there is a set of n
points that can be shattered.

Scoring: 1 point

Thanks to Rui Fan and Gregory Shakhnarovich for making available their typeset solutions.

27

