
6.867 Machine learning and neural networks

Problem set 4

Due: November 28th, in recitation

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed).

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write
your name on the top of every page.

Density Estimation using Mixtures of Gaussians

In this problem, we will fit mixture of Gaussians models to traced handwritten digits using
the EM algorithm. Most of the code and utilities that you will need will be provided.

EM.m fits a mixture of k Gaussian distributions to the training data. The simplest way to
call this function is [params,loglikes] = EM(X,k), where params contains the estimated
parameters (mixing proportions and the means and covariances of each of the component
Gaussian); loglikes stores the log-data likelihoods of the mixture models we produce in
the course of the EM iterations. The following functions are called inside EM.m:

Estep Performs the expectation step: for each data point, we calculate the posterior prob-
ability that it was drawn from each of the component Gaussians.

Mstep Performs the maximization step: finds the maximum likelihood settings of the pa-
rameters assuming we already have the posterior probabilities computed in the E-step.

mixtureLL Calculates the log-likelihood of the data given the current setting of the mixture
model parameters (component Gaussians as well as the mixing proportions).
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1. Complete the function Mstep.m in terms of updating the means and the covariances
of the Gaussian components (use the skeleton we have provided).

Answer:

function compParams = Mstep(X, p)

[n,d] = size(X) ;

k = size(p,2) ;

compParams = [] ;

for i=1:k

reped_p = repmat(p(:,i),1,d) ; % This can come in usefull

ni = sum(p(:,i)); % Total ’weight’ of ith component

prior = ni/n;

mu = sum( reped_p.*X )/ni; % weighted mean

XminusMu = op(X,’-’,mu);

Sigma = (reped_p.*XminusMu)’*XminusMu/ni; % weighted covariance

compParams = [compParams, struct(’prior’,prior,’mean’,mu,’cov’,Sigma)];

end;

Scoring: 7 points

Our implementation of the E-step (EstepX.m) deviates slightly from a “straight-forward”
implementation. Modifications of this type are necessary in practice to avoid numerical
problems.

2. By looking through EstepX.m, mixtureLLX.m and evalmixtureX.m can you suggest
what the problem is that these routines are trying to avoid?

Answer: The numeric values of the densities are extremely large. Multiplying
many of these probabilities quickly leads to numeric overflow.

Scoring: 1 point

In the following questions, we study a dataset of handwritten digits given in the file
pendigits.mat (type load pendigits to load it into MATLAB). The digits were drawn
with a stylus input device. The raw trajectories of the digits can be found in the files
pendigits-orig.(tra|tes|names). The trajectories were then scaled to normalize them,
and eight equi-distant points along the trajectory were extracted from each digit sample.
We will use versions of the resulting 16-dimensional dataset (two dimensions for each of
the eight points). You can find more information in the file pendigits.names.

The provided routine showdigit.m can be used to plot the digits:

>> showdigit(pentrain8(42,:))

>> showdigit(pentrain4(42,:))
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The green circle is the beginning of the trajectory. Each row of the data matrix pentrain4

contains only four points, the means of every two consecutive points.

In order to visualize our estimation results, we will simplify the problem a bit by considering
only the second point in pentrain4, given by pentrain4(:,3:4). Moreover, we will restrict
ourselves to just digits three, four, and five. The resulting 2219 × 2 matrix second345

contains the relevant points.

3. Use EM.m to fit the distribution of points in second345 as a mixture of six Gaussian
distributions. Plot the resulting distribution, and the resulting components, using the
routine plotmixture2D.m that we have provided. You can call plotmixture2D.m,
e.g., as follows:

>> plotmixture2D(second345,’evalmixtureX’,params)

where params specify the 6-component mixture model. The blue lines in the contour
plot correspond to each of the component Gaussians in the mixture and the red lines
provide the contours of the 6-component mixture model. At the center of each Gaus-
sian component, you also see the numerical value of the mixing proportion allocated
to that component.

Turn in the contour plot (no need to turn in the 3D plot).

Answer: The resulting mixture might be (you might converge to a different mix-
ture):
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Scoring: 1 point

It is also interesting to note the improvement in log likelihood over the progress of EM.
Note that we actually got extremely close to the solution after about 150 iterations:
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The resulting log-likelihood should be a bit over 1000, and EM should converge after a few
hundred iterations.

4. Rerun EM on the same data-set a few times, looking at the resulting plots and the
log-likelihoods. Explain why you do not always get close to the same distribution,
and why you sometimes do get the exact same distribution (and not just a similar
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one).

Answer: The EM algorithm converges to a local optimum. Initializing the mixture
differently might lead to convergence to a very different local optimum. However,
once we are close enough to a local optimum, we will always end up in it, and so
we get the same mixture with different starting points.

In some way, the space of mixtures is partitioned to parts of the space that all
lead to the same local optimum. The is similar to slopes of a mountain– think of
partitioning a mountain range according to which peak you would get to if you just
went up. If you started in different places, you might end up on different peaks.
But for each peak, there is a large area which leads to it.

Scoring: 3 points

Plot the log-likelihood at each EM iteration (this is returned as the second output value of
EM.m). Notice (sometimes) the step-like behavior of the log-likelihood: the log-likelihood
is almost unchanged throughout many iterations, and then increases dramatically after a
few additional iterations. You can use the history of mixture parameters (returned as the
third output value of EM.m) to see how the mixture distribution itself changes in relation to
the log-likelihood. It takes time to resolve how to best allocate the mixture components,
especially if (some of) the Gaussian components are only slightly different from each other
in the current model.

Initialization

The EM algorithm describes how to update the mixture parameters in order to improve
the log-likelihood of the data. This search process must start somewhere. An optional
parameter to EM.m can be used to control the way the mixture parameters are initialized.

5. The provided routine initSame.m sets all mixture components to have zero mean,
unit (spherical) covariances, and equal mixing proportions. Try using it to fit second345.
How many iterations does it take for EM to converge? Why? Describe what happens
at each iteration (you might want to set the histfreq parameter to one, and plot
the mixture at each iteration).

Answer: It takes only two iterations. In the E step of the first iteration, every
point is soft-assigned with equal weights to all the components (since they are all
identical). In the M step, all components will be updated in the same way, since
they all have the same weighted set of points associated with them. In the second
iteration, the E step will not change the assignments, and so the M step will not
change the parameters, and so we have converged to a stationary point.

Note that this stationary point is very different from the local optima we usually
converge to. This is an unstable stationary point— any slight perturbation of the
parameters will cause us to start getting farther away from it (if we run EM).
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Scoring: 2 points

6. What would happen if the means and covariances were all equal, but the initial mixing
proportions were chosen randomly? If the means and mixing proportions were equal
but the initial covariance matrices were chosen randomly?

Answer: If only the mixing proportions were different, we would still get the same
behavior. All the points will have weights equal to the mixing proportions, and all
the components will remain identical.

If the covariances were different, farther away points will get assigned more
heavily to wider components. The components would then start changing to reflect
that, and EM would proceed normally.

Scoring: 3 points

The default initialization routine used by EM.m is initRandPoints.m, which initializes the
means to random data points, and sets the covariance matrices to diagonal matrices with
the same overall variance parameter computed from the overall covariance of the data.

Data anomalies and regularization

The actual data was given as integers in the range 0..100 in each coordinate. The matrix
pentrain8, and its derivatives pentrain4 and second345 represent the original data scaled
to [0,1] with uniform noise added.

The matrix cleanpentrain8 contains the 0..100 integer valued data.

7. Try estimating a 5-component mixture model to the first point cleanpentrain8(:,1:2).
You can also try the rest of the time points cleanpentrain8(:,2t-1:2t). Why does
EM fail? What happens ? Hint: plot the distribution using

>> plot(cleanpentrain8(:,1),cleanpentrain8(:,2),’.’)

Answer: EM fails since we one of the components quickly converges to a degen-
erate Gaussian. Since about a fifth of the points have the first coordinate equal
to exactly zero, we try to fit these points with a Gaussian with zero variance in
the first coordinate. But the 2-dimensional density of such Gaussian is infinite (its
covariance matrix is not invertible).

Scoring: 3 points

8. Would we be able to resolve the above problem by introducing regularization to the
M-step? Regularization would modify how we update the covariance matrix of each
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of the component Gaussians in the M-step. Let n̂i is the number of “soft” counts
assigned to component i in the E-step and Σ̂i the corresponding (unregularized)
estimate of the covariance matrix. We can now imagine having an additional set of
n′ points with covariance S (the prior covariance matrix) also assigned to component
i. These additional points would change the covariance update according to

Σ̂′i = (
n̂i

n̂i + n′
) Σ̂i + (

n′

n̂i + n′
)S (1)

where Σ̂′i is the new regularized estimate of the covariance matrix for component i.
(We do not expect you to try this out but answer the question based on what you
think would happen).

Answer: This would help, since even if Σ̂i is degenerate, since S is not degenerate,
the resulting Σ̂′i will not be degenerate. By using this regularization we are avoiding
getting close to problematic areas of the space of mixture parameters.

Scoring: 1 point

Unsupervised Learning Using Mixture Models

We continue to use the trajectories in an unsupervised manner, i.e., not paying attention
to the accompanying labels. We can use the mixture models to try to partition the set
of input samples (trajectories) into clusters. We will also assess how the emerging cluster
identities will correlate with the actual labels.

The first question we have to answer is how many Gaussian components we should use in
the mixture model. How could we decide the issue? We could proceed similarly to the
case of setting the kernel width parameter in non-parametric density estimation, i.e., via
cross-validation. The problem here, however, is that estimating any single mixture model
with say 5 components already takes a fair amount of computing time and repeating this
process n times (n is the number of training examples) does not appear very attractive.
Instead, we will use a simple approximate criterion or Bayesian information criterion to
find the appropriate number of clusters. This involves adding a complexity penalty to the
log-data likelihoods. In other words, if LL(k) is the log-likelihood that our k-component
mixture model assigns to the training data after training, we find k that maximizes

score(k) = LL(k)− 1

2
Dk log(n) (2)

where Dk denotes the number of parameters in the k-component mixture model. For a
Gaussian mixture mode, Dk = k ∗ (d+ d ∗ (d+ 1)/2) + k− 1, where d is the dimensionality
of the examples (e.g., 2). Note that the penalty is a function of the number of parameters
and the number of training examples n.
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9. Use different numbers of mixture components with second345 and select the “op-
timum” number of components. Use mixtureModSel.m to plot the scores for k =
1, . . . , 8. Return the plot. Your choice of k may change if you re-estimate the mix-
ture models (make sure you understand why).
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Scoring: 1 point

Note that there may be more clusters than than there are different types of digits. Some
of the digits may have sub-types or our assumption that the clusters look like Gaussians
may be invalid and we need more than one Gaussian to account for any single real cluster
in the data.

Now, given the “best” mixture model, we would like to correlate the cluster identities with
the available labels. We can do this to find out how well we could capture relevant structure
in the data without actually knowing anything about the labels.

10. The labels are provided in labels345. Write a simple MATLAB routine to get
hard assignments of training examples to clusters. You’ll probably want to use
mixtureScaledPiX for this purpose. Use correlate.m to correlate the cluster iden-
tities with the available labels labels345. Return your MATLAB code and the
correlation matrix. Briefly discuss whether the approach was successful, i.e., whether
we could associate the clusters with specific labels.

Answer: Using the functions:

function c = hard(X, compParams)
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scaledpix = mixtureScaledPiX(X,compParams);

[dummy,c] = max(scaledpix,[],2);

We get:

>> c = hard(second345,mm);

>> correlate(c,labels345)

ans =

0 15 389

26 140 184

0 378 2

0 228 8

284 3 2

352 16 2

57 0 133

From the above correlation matrix, we observe that most components do corre-
spond to separate digits. Up to a fairly low number of “errors”, the digit “3” was
almost completely separated, while the digits “4” and “5” have one component in
common.

The main problem is that by just looking at the seven components, we could
not know that the data actually consists of a mixture of three digits. We would
have suspected there are seven distinct classes in the data.

Scoring: 2 points

Using Mixture Models for Classification

We will now try to use the Gaussian mixture models in a classification setting. We can
estimate class-conditional density models (mixture models) separately for each class and
classify any new test example on the basis of which class-conditional model assigns the
highest likelihood to the example.

11. Using the provided fitAllDigits.m, fit a 3-component Gaussian mixture model to
each of the digits in pentrain8,trainlabels.

Answer:

>> dcp = fitAllDigits(pentrain8, trainlabels,3);

Scoring: No score

9



12. Complete the routine classify.m that takes as input the examples to be classified
and a cell-array of mixture parameters (as returned by fitAllDigits.m) to return
the maximum likelihood assignment of labels to the examples. Provide the code for
classify.m.

Answer:

function c = classify(X, classes_compParams)

m = length(classes_compParams);

n = size(X,1);

p = zeros(n,m);

for i=1:m

p(:,i) = evalmixtureX(X, classes_compParams{i});

end

[dummy, c] = max(p,[],2);

Scoring: 5 points

13. Classify the pentrain8 and pentest8, and use correlate.m to compare the results
to the true labeling in trainlabels and testlabels. Turn in the two correlation
matrices.

Answer:

>> trainc = classify(pentrain8,dcp);

>> testc = classify(pentest8,dcp);

>> correlate(trainc,trainlabels)

ans =

0 775 0 1 0 0 0 5 0 0

0 2 779 2 0 0 0 0 0 0

0 0 1 714 0 0 0 0 0 0

0 0 0 0 780 0 3 0 0 0

0 1 0 0 0 720 1 0 0 0

0 0 0 0 0 0 715 0 0 0

0 0 0 0 0 0 0 772 0 0

2 0 0 1 0 0 1 1 719 0

1 1 0 1 0 0 0 0 0 719

777 0 0 0 0 0 0 0 0 0

>> correlate(testc,testlabels)

ans =

0 357 4 3 0 6 3 11 0 2

0 5 359 0 0 0 0 0 0 0
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0 0 0 330 0 2 0 0 0 0

0 1 0 0 362 1 0 0 0 0

0 0 0 0 0 289 0 0 0 0

1 0 0 0 0 0 325 0 0 0

0 0 1 0 0 0 0 330 0 2

16 0 0 2 0 5 8 0 336 1

0 1 0 1 2 32 0 23 0 331

346 0 0 0 0 0 0 0 0 0

Scoring: 1 point

For comparison, you probably want to repeat the above for 1-component Gaussian mix-
tures. You could also use the model selection routine we have provided to find a different
number of mixture components for each class-conditional density. Increasing the number of
components per class would eventually force you to use regularized estimates (see above).

Markov and Hidden Markov Models

In this problem, we will use Markov and Hidden Markov models to identify the language of
written sentences. For simplicity our representation of text will include only 27 symbols—
the 26 letters of the Latin alphabet, and the space symbol. Any accented letter is rep-
resented as a non-accented letter, none-Latin letters are converted to their closest Latin
letters, and punctuation is removed. This representation naturally looses quite a bit of
information compared to the original ASCII text. This ’handicap’ is in part intentional so
that the classification task would be a bit more challenging.

Most of the MATLAB code you will need here will be given. You will find the following
routines useful (here and perhaps in some of your projects as well):

readlines.m Reads a named text file, returning a cell array of the lines in the file. To get
line i of cell-array lines returned from, e.g., lines = readlines(’cnn.eng’), use
lines{i}.

text2stream.m Converts a string (a line of text) into a row vector of numbers in the
range {1, . . . , 27}, according to the representation discussed above. So, for example,
numberline = text2stream(lines1) would convert the first line of text from lines

into a row vector of numbers. The conversion of the full output of readlines would
have to be done line by line.

count.m Given text in a row vector representation and a width k, the function computes
the count of all k-grams in the array. In other words, the function returns a k-
dimensional array representing the number of times each configuration of k successive
letters occurs in the text.
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totalcount.m This function allows you to compute the accumulated counts from each of
the lines of text returned by readlines. Use this function to find the training counts
for the different languages.

Language identification using Markov models

Here we will construct a language classifier by using Markov models as class-conditional
distributions. In other words, we will separately train a Markov model to represent each
of the chosen languages: English, Spanish, Italian and German. The training data is given
in the files cnn.eng, cnn.spa, cnn.ita, cnn.ger, which contain several news articles
(same articles in different languages), one article per line.

We will first try a simple independent (zeroth-order Markov) model. Under this model,
each successive symbol in text is chosen independently of other symbols. The language is
in this case identified based only on its letter frequencies.

1. Write a function naiveLL(stream,count1) which takes a 1-count (frequency of let-
ters returned by count.m) and evaluates the log-likelihood of the text stream (row
vector of numbers) under the independent (zeroth-order Markov) model.

Answer:

function ll = naiveLL(stream,c1)

lp = log(c1/sum(c1));

ll = sum(lp(stream));

Scoring: 5 points

Extract the total 1-counts from the language training sets described above. Before proceed-
ing, let’s quickly check your function naiveLL. If you evaluate the log-likelihood of ’This
is an example sentence’ using the English 1-counts from cnn.eng, you’ll get -76.5690,
while the Spanish log-likelihood of the same sentence is -77.2706.

2. Write a short function naiveC which takes a stream, and several 1-counts corre-
sponding to different languages, and finds the maximum-likelihood language for the
stream. You could assume, e.g., that the 1-counts are stored in an array, where each
column corresponds to a specific language. The format of the labels should be in
correspondence with the test labels described below.

Answer:

function [c,ll] = naiveC(stream,counts1)

for i=1:size(counts1,2)

ll(i) = naiveLL(stream,counts1(:,i));

end

[dummy,c]=max(ll);
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Scoring: 3 points

The files song.eng, song.spa, song.ita, song.ger contain additional text in the four
languages. We will use these as the test set. For your convenience, we have provided you
with script generate test.m :

test_sentences = [ readlines(’song.eng’) ; ...

readlines(’song.ger’) ; ...

readlines(’song.spa’) ; ...

readlines(’song.ita’) ] ;

test_labels = [ ones(17,1) ; ones(17,1)*2 ; ones(17,1)*3 ; ones(17,1)*4 ]

In order to study the performance of the classifier as a function of the length of test strings,
we will classify all prefixes of the lines in the test files. The provided routine testC.m

calculates the success probability of the classification, for each prefix length, over all the
streams or strings in a given cell-array. You can call this function, e.g., as follows

successprobs = testC(test_sentences,test_labels,’naiveC’,count1s)}

where count1s provides the array of training counts that your function naiveC should
accept as an input.

3. Plot the success probability as a function of the length of the string. What is the
approximate number of symbols that we need to correctly assign new piece of text to
one of the four languages?

Answer: We carry out the following operations:

>> eng = readlines(’languages/cnn.eng’);

>> ita = readlines(’languages/cnn.ita’);

>> ger = readlines(’languages/cnn.ger’);

>> spa = readlines(’languages/cnn.spa’);

>> counts1 = [totalcount(eng,1) , totalcount(ger,1) , totalcount(spa,1) , totalcount(ita,1)]

>> p = testC(test_sentences,test_labels,’naiveC’,counts1);

>> plot(p)

Resulting in the plot:
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From the plot we see that approximately 100 characters are needed for reliable
language classification.

Scoring: 1 point

In order to incorporate second order statistics, we will now move on to modeling the
languages with first-order Markov models.

4. Write a function markovLL(stream,count2) which returns the log-likelihood of a
stream under a first-order Markov model of the language with the specified 2-count.
For the initial probabilities, you can use 1-counts calculated from the 2-counts.

Answer:

function ll = markovLL(stream,c2)

c1 = sum(c2,2); % 1-count calculated from 2-count

p0 = c1/sum(c1); % Initial probs

p1 = op(c2,’./’,c1); % Transition probs

lp0 = log(p0);

lp1 = log(p1);

ll = lp0(stream(1));

for i=2:length(stream)

ll = ll+lp1(stream(i-1),stream(i));

end

Scoring: 5 points

Quick check: The English log-likelihood of ’This is an example sentence’ is -63.0643,
while its Spanish log-likelihood is -65.4878. We are again assuming that you are using the
training sets described above to extract the 2-counts for the different languages.
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5. Write a corresponding function markovC.m that classifies a stream based on Markov
models for various languages, specified by their 2-counts.

Answer:

function [c,ll] = markovC(stream,counts2,zamir)

if nargin<3, zamir=0; end;

if ischar(stream), stream=preproc(stream); end;

for i=1:size(counts2,3)

ll(i) = markovLL(stream,counts2(:,:,i)+zamir);

end

[dummy,c]=max(ll);

The above function can also incorporate a pseudo-count (as required later on) and
can deal with either streams or strings as inputs. These features were not required
for a solution to be complete.

Scoring: 1 point

6. Try to classify the sentence ’Why is this an abnormal English sentence’. What
is its likelihood under a Markov model for each of the languages ? Which language
does it get classified as ? Why does it not get classified as English ?

Answer: After calculating the two-counts:

>> counts2 = cat(3,totalcount(eng,2) , totalcount(ger,2) , totalcount(spa,2) , totalcount(ita,2))

We can calculate:

>> [c,ll] = markovC(text2stream(’Why is his is an abnormal English sentence’),counts2)

c = 3

ll = -Inf -Inf -115.9894 -Inf

(We also get a few warnings).
The sentence gets classified as Spanish with a log-likelihood of -116. In all

other languages, including English, it has infinitely negative log-likelihood. This
is because the letter pair “bn” does not appear in the training text, and so no
sentence with this letter combination will be generated by the learned model. The
probability of generating the above sentence under out English model is thus zero,
and its log-likelihood is negative infinity.

Scoring: 3 points

When estimating discrete probability models, we often need to regularized the parameter
estimates to avoid concluding that any configuration (e.g., two successive characters) have
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probability zero unless such the configuration appeared in the limited training set. Let
{θi}, where

∑m
i=1 θi = 1, define a discrete probability distribution over m elements i ∈

{1, . . . ,m}. For the purposes of estimation, we treat θi as parameters. Given now a
training set summarized in terms of the number of occurrences of each element i, i.e., n̂i,
the maximum likelihood estimate of {θi} would be

θ̂i =
n̂i∑m
j=1 n̂j

(3)

This is zero for all elements i that did not occur in the training set, i.e., when n̂i = 0. To
avoid this problem, we introduce a prior distribution over the parameters {θi}:

P (θ) =
1

Z

m∏
i=1

θαii (4)

where Z is a normalization constant and αi ≥ 0’s are known as pseudo-counts. This prior,
known as a Dirichlet distribution, assigns the highest probability to

θ̃i =
αi∑m
j=1 αj

(5)

Thus αi’s behave as if they were additional counts from some prior (imaginary) training
set.

We can combine the prior with the maximum likelihood criterion by maximizing instead
the penalized log-likelihood of the data (expressed here in terms of the training set counts
n̂i):

J(θ) =

log-probability of data︷ ︸︸ ︷
m∑
i=1

n̂i log θi +

log-prior︷ ︸︸ ︷
logP (θ) (6)

=
m∑
i=1

n̂i log θi +
m∑
i=1

αi log θi + constant (7)

=
m∑
i=1

(n̂i + αi) log θi + constant (8)

The maximizing {θi} is now

θ̂i =
n̂i + αi∑m

j=1(n̂j + αj)
(9)

which will be non-zero whenever αi > 0 for all i = 1, . . . ,m. Setting αi = 1/m would
correspond to having a single prior observation distributed uniformly among the possible
elements i ∈ {1, . . . ,m}. Setting αi = 1, on the other hand, would mean that we had m
prior observations, observing each element i exactly once.
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7. Add pseudocounts (one for each configuration) and reclassify the test sentence. What
are the likelihoods now. Which language does the sentence get classified as ?

Answer: We now have:

>> [c,ll] = markovC(text2stream(’Why is this is an abnormal English sentence’),counts2,1)

c = 1

ll = -106.1994 -123.9184 -114.7622 -128.4992

And the sentences gets correctly classified as English.

Scoring: 2 points

8. Use testC.m to test the performance of Markov-based classification (with the cor-
rected counts) on the test set. Plot the correct classification probability as a function
of the text length. Compare the classification performance to that of naiveC.m.
(Turn in both plots).

Answer:

>> p = testC(test_sentences,test_labels,’markovC’,counts2,1);

>> plot(p)
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The performance using Markov models is much better– accurate performance
is achieved with less than 40 characters.

Scoring: 1 point
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Hidden Markov Models

We will now turn to a slightly more interesting problem of language segmentation: given a
mixed-language text, we would like to identify the segments written in different languages.

Consider the following simple approach: we will first find the character statistics for each
language by computing the 1-counts from the available training sets as before. We will
then go through the new text character by character, classifying each character to the most
likely language (language whose independent model assigns the highest likelihood to the
character). In other words, we would use naiveC to classify each character in the new text.
To incorporate higher-order statistics, we could train a Markov model for each language
(as before), and again assign the characters in the text to the most likely language.

9. Why would we expect the resulting segmentation not to agree with the true segmen-
tation? What would the resulting segmentation look like? What is the critical piece
of information we are not using in this approach ?

Answer: We would classify each letter according to the language in which it is
most frequent. And so, all ’t’s will get classified as English, while all ’a’ will get
classified as Spanish. Letters in the same word would get classified as different
languages. This is of course unreasonable.

The crucial information we are not using is that adjacent characters tend to
come from the same language.

Scoring: 4 points

We would rather model the multi-lingual text with a hidden Markov model. For simplicity,
we will focus on segmenting text written in only two languages.

10. Suggest how a hidden Markov model can solve the problem you identified above. Pro-
vide an annotated transition diagram (heavy lines for larger transition probabilities)
and describe what the output probabilities should be capturing.

Answer: We can use the hidden variable to designate which language the charac-
ters come from. The transition probabilities for this hidden variable will encode the
information that transitions between languages are much less frequent then remain-
ing in the same language. The output probabilities given that we are in a specific
language would correspond to the single-character statistics of that language.

Scoring: 4 points

For some setting of the parameters, this HMM probably degenerates to the independent
model. Make sure you understand when this happens.
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Now, load the example text from the file segment.dat. The text, mixed German and
Spanish, is given in the variable gerspa as numbers in the range 1..27 (as before). You can
use the provided function stream2text.m to view the numbers as letters.

The routine [hmm,ll] = esthmm(data,hmm) uses EM to find the maximum likelihood
parameters of a hidden Markov model, for a given output sequence(s). As discussed earlier,
the EM algorithm has to start its search with some parameter setting. The hmm input
argument to esthmm provides this initial parameter setting.

The routine hmm = newhmm(numstates,numout) creates random HMM parameters for an
HMM with numstates hidden states, and numout output symbols. An optional third
argument controls the “non-uniformity” of the parameters.

Note: The orientation of the matrices Po and Pt is different from those in recitation:
Pt(i,j)= P (statet = j|statet−1 = i) and Po(i,a)= P (Ot = a|statet = i).

With two different initializations, you will probably find two different HMMs. It is a good
idea to run the EM algorithm multiple times, starting from slightly different initial settings.
Every such run can potentially lead to a different result. Make sure you understand how
you would choose among the alternative solutions.

11. Estimate a two-state hidden Markov model with two different types of initial settings
of the state transition probabilities. First, set the transition probabilities close to
uniform values. In the second approach, make the “self-transitions” quite a bit more
likely than the transitions to different states. Which initialization leads to a better
model?

Answer: We can compare the two estimated models by comparing their likelihood.
We are seeking a maximum likelihood model, and so we will select the one with a
higher likelihood.

>> randhmm = newhmm(2,27);

>> [hmm1,ll1] = esthmm(gerspa,randhmm);

>> ll1(end)

ans = -7.8976e+03

>> biasedhmm = newhmm(2,27);

>> biasedhmm.Pt = [0.9,0.1;0.1,0.9];

>> [hmm2,ll2] = esthmm(gerspa,biasedhmm);

>> ll2(end)

ans = -7.8115e+03

The second HMM has a higher log-likelihood, and thus will be selected.
We can also look at the resulting HMM parameters and notice that the second

model better fits what we were looking for: the transition probabilities are very
biased, the initial probabilities are almost deterministic, and the output probabilities
resemble the language statistics we are already familiar with from the first part of
the problem.
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Scoring: 2 points

Now try to segment gerspa into German and Spanish, using a two-state hidden Markov
model. You can then use the routine viterbi(sequence,hmm) to examine the most likely
(maximum a posteriori probability or MAP) state sequence. The correct segmentation of
gerspa is given in gerspa lang.

12. Examine the difference between your segmentation and the correct one. Do the errors
make sense?

Answer: There are sixty-four miss-labeled characters. Note that all of them occur
on the boundary between language transitions. All the transitions were identified,
but the exact location was sometimes missed. This is very reasonable.

Scoring: 1 point

13. Use the provided routine hmmposteriors(sequence,hmm) to calculate the per charac-
ter posterior probabilities over the states. These are the γt(i) probabilities described
in lectures (t gives the character position in text and i specifies the state). Plot these
probabilities as a function of the character position in the text sequence and turn in
the plot. You might want to re-scale the axis using axis[0 3000 0 1.1].
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Scoring: 1 point

14. Find the sequence of maximum a posteriori probability states. That is, for each
time point t, find the state i with the maximum a posteriori probability P (statet =
i|observedseq). Compare this state sequence with the maximum a posteriori state
sequence. Are they different?
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Answer: They differ in one position (position 631).

Scoring: 2 point

15. Give an example of a hidden Markov model, with two hidden states and two output
symbols, and a length two output sequence, such that the MAP state sequence differs
from the sequence of MAP states. Be sure to specify all the parameters of the HMM
(these need not be the maximum likelihood parameters for this specific length two
output sequence).

Answer:
P (X0 = a) = 0.6, P (X0 = b) = 0.4)

P (X1 = a|X0 = a) = 0.5, P (X1 = b|X0 = a) = 0.5

P (X1 = a|X0 = b) = 0, P (X1 = b|X0 = b) = 1

. All output probabilities are uniform. For any output sequence, the MAP state
sequence is b, b with posterior probability 0.4. But the MAP state of X0 is a, with
posterior probability 0.6 (each of the state sequences a, a and a, b have posterior
probability 0.3).

Scoring: 3 points

In the above example, we assumed no knowledge about the languages. We would like to im-
prove the segmentation by incorporating some additional information about the languages
such as single-character statistics.

16. What parameters of the HMM still need to be estimated ? Modify the routine
esthmm.m accordingly. (Turn in the modifications)

Answer: The output probabilities are now known and fixed. We only search for
the maximum likelihood initial and transition probabilities. We make one change to
esthmm.m: delete the following line:

hmm.Po = op(Nsx,’./’,sum(Nsx,2));

It would also be appropriate, though not necessary, to delete the calculation of Nsx,
since it is now unused.

Scoring: 3 points

17. (Optional) Use the single-character statistics you calculated from cnn.spa and cnn.ger

to segment the text. What is the maximum likelihood estimate of the remaining pa-
rameters ? Compare the resulting most likely state sequence to the one you found
without this prior information. Are they different ?
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18. Hidden Markov models can also be useful for classification. Suggest how you would
use HMMs in place of the Markov models described above to identify the language
of any specific (single-language) document. Specifically, list the routines we have
provided that you could make use of and describe which additional routines you
would need.

Answer: For each language, we would train a HMM (using esthmm.m) on the
corpus of texts for that languages. We would have to choose the number of hidden
states in each of those HMMs. We can set a fixed number of hidden states (e.g. any
number of hidden states above 27 would give us a model with a training accuracy
at least as good as a first order Markov model, but good training accuracy might
not lead to good generalization). We can also use cross-validation to choose the
number of states for each language model.

After training the models, in order to classify a sentence, we would compare
the likelihood of the query sentence under each of the models. This is given as the
third output parameter of hmmposteriors.m. However, all the other calculations
in hmmposteriors.m are unnecessary (and take significant time)– it is enough to
run only the forward calculation as follows:

function logPx = hmmloglikelihood(x,hmm)

loga = logalpha(x,hmm);

logPx = logsumexp(loga(:,n));

Scoring: 5 points

19. (Optional) Use hidden Markov models, with a varying number of states, for the
language classification task investigated in the first part of this problem. Using the
same training set and test set as before, create a graph of the probability of correct
classification as a function of the length of the text. Discuss how the results compare
to using naive classification and first-order Markov models, and how changing the
number of hidden states affects the results.
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