
6.867 Machine learning and neural networks

Problem set 5

Solutions

Problem 1

In figure 1 we have two diseases d1 and d2 as well as two potential findings f1 and f2. The
diseases and findings are assumed to be binary. We assume further that the conditional
probabilities of P (f1|d1, d2) and P (f2|d2) are noisy-OR models as described in the lectures.

d1 d2

f1 f2

Figure 1: A Bayesian network for medical diagnosis. We assume that the conditional
probabilities are noisy-OR models.

1. Now, suppose we know that the outcome of finding f1 was positive (f1 = 1). What
happens to the disease probabilities? Justify your answer.

Both diseases will have higher marginal posterior probabilities as a result: P (d1 =
1|f1 = 1) > P (d1 = 1) and P (d2 = 1|f1 = 1) > P (d2 = 1). This is particular to the
noisy-OR model.

Why would this happen? Well, we have to somehow explain the evidence that the find-
ing was one. In a noisy-OR model, this can happen only if at least one of the diseases
were present (or if the positive finding occured because of an unknown cause). The
relative strength of which cause explained the finding depends on the actual probabil-
ity values. Nevertheless, this doesn’t change the fact that there’s now more evidence
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Figure 2: A junction tree representation of the disease/finding Bayesian network.

that each disease is present than before. This has to be reflected in the posterior
probabilities.

You can verify that this is indeed what happens by plugging in any numerical values
to the conditional probabilities

P (f1 = 1|d1, d2) = 1− (1− q0) (1− q1)d1 (1− q2)d2 (1)

and the priors P (d1) and P (d2).

It is not hard though a bit lengthy to show this more mathematically.

2. Suppose later on we learn that finding f2 was positive as well. How will the probability
of disease d1 being present change as a result? Justify your answer.

Now something interesting happens. The posterior for d2 = 1 further increases,
P (d2 = 1|f1 = 1, f2 = 1) > P (d2 = 1|f1 = 1) but the posterior for d1 = 1 actually
decreases but still remains above the original prior probability:

P (d1 = 1) < P (d1 = 1|f1 = 1, f2 = 1) < P (d1 = 1|f1 = 1) (2)

This is known as the explaining away effect. We have acquired further evidence that
d2 is present (without saying anything about d1) and this decreases our belief that d1

is present. We would indeed now attribute d2 = 1 as the main cause for observing
f1 = 1. This chips away the evidence from d1 but not to zero. Thus there’s still some
evidence that d1 might have been the cause of f1 = 1 and thus its posterior remains
higher than the prior.

3. Construct a junction tree for the graph model in figure 1. Also initialiaze the potential
functions for the junction tree. Are there many ways of initializing the potentials?

In figure 2, we have a junction tree representation of the bayesian network. Note that
we need one node for d1, f1 and d2 because f1 is conditionally dependent on d1 and
d2. “Moralization” is the realization of this fact.

There are many ways to initialize the potentials, for example

ψ(d1, f1, d2) = P (f1|d1, d2)P (d1)P (d2) ψ(d2) = 1 ψ(d2, f2) = P (f2|d2)(3)

ψ(d1, f1, d2) = P (f1|d1, d2)P (d1)P (d2) ψ(d2) = P (d2) ψ(d2, f2) = P (f2, d2)(4)
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4. Roughly speaking, how many operations do we need to perform to complete both
“collect” and “distribute” steps? You can assume here that we will blindly apply
both propagation steps whatever the evidence might be.

The collection and distribution steps for this junction tree are relatively simple because
we only have two nodes (the d2 is not counted here). Let’s choose the d2f2 node as
the root node. One can consider the number of values that need to be summed over as
the “operations”. Here, the collection operation requires summing over the values of
d1 and f1. However, to get ψ′(d2) for all values of d2 we have to perform 8 operations
(calculations involve three binary valued variables). Updating ψ(f2, d2) as a result
would take another 4 operations for the same reason.

Next, the distribution operation consists of propagating changes made to ψ(f2, d2)
to the d2f1d1 node. Similarly, we have to obtain ψ′(d2) again and this takes four
operations (involves one less variable than before). Updating ψ(d1, f1, d2) for all con-
figurations would require another 8 operations, however.

This rough calculation that ignores additional multiplications or divisions that we need
merely highlights the fact that the number of operations needed increases exponentially
with the clique size (the number of configurations of the associated variables increases
exponentially in the clique size).

5. Suppose we would like to determine which finding to query (which of the correspond-
ing tests to carry out). For this we need to evaluate the mutual information between
the disease configurations and the possible values of each of the findings. In other
words, we have to compute I(f1; d1, d2) and I(f2; d1, d2), where, for example,

I(f1; d1, d2) =
∑

d1,d2,f1=0,1

P (d1, d2, f1) log
P (d1, d2, f1)

P (d1, d2)P (f1)
(5)

Now, show that the graph structure (original or the junction tree) implies that
I(f2; d1, d2) = I(f2; d2).

I(f2; d1, d2) =
∑

P (d1, d2, f2) log
P (d1, d2, f2)

P (d1, d2)P (f2)
(6)

=
∑

P (d1, d2, f2) log
P (f2|d2)P (d1)P (d2)

P (d1)P (d2)P (f2)
(7)

=
∑

P (d2, f2) log
P (f2, d2)

P (d2)P (f2)
= I(f2; d2) (8)

In equation 7, we used the fact that f2 is conditionally independent of d1 and that the
diseases are marginally independent. In equation 8, we marginalize d1 out since the
log term is independent of d1.
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6. Based on your results for 3) and 5) show that the marginal probabilities that we
compute in the junction tree suffice for evaluating which test we should query next
(“active learning”).

The question asks whether the junction tree contains all the probabilities that we will
need access to. In other words, does it explicitly contain the probabilities we need. We
need P (d1, d2, f1), P (d1, d2) and P (f1) in order to calculate I(f1; d1, d2). As we showed
in part e), we need P (d2, f2), P (d2) and P (f2) in order to calculate I(f2; d1, d2). The
junction tree explicitly holds the probabilities P (d1, f1, d2) and P (d2, f2). The only
other probabilities that we need are contained within these two. We can achieve P (d2),
P (f2), P (d1, d2) and P (f1) by simply summing (marginalizing) over probabilities in
the junction tree. Hence, all of the probabilites are available in the sense that there is
no need to invoke, e.g., Bayes Law to calculate any of the necessary probabilities.

To get a sense of why it is important to only use probabilities that are explicit in
the junction tree, imagine trying to calculate P (x1, x100) in a 100 node markov chain
where the probabilities P (xi, xi+1) and P (xi) are the only distributions explicit in the
junction tree. This does not mean that we couldn’t obtain P (x1, x100) efficiently but
just that this requires additional work.

Problem 2

Your task here is to identify the relevant variables and the graph structure that captures
the following (imaginary) setting. There may be multiple “correct” answers.

“A panel of three judges determines the outcome of presidential elections. Each judge can
vote for one of the two possible candidates and the outcome is obtained by a majority rule.
Two of the judges are impartial in the sense that they will listen to arguments from two
spokespersons each working for one of the candidates while the remaining judge consistently
pays attention to only one of the spokespersons. Each spokesperson will ask a judge to vote
for a specific candidate. The spokespersons never talk nor listen to each other directly.”

1. Identify the relevant variables based on the above description. For each variable state
the possible values that it can take. If you use abbreviations to identify the variables
make sure they are not ambiguous.

The variables are:

Election outcome E1 {1, 2} (candidate 1 or 2)
Spokesperson 1 S1 {1, 2} (argument has the effect of supporting 1 or 2)
Spokesperson 2 S2 {1, 2} (argument has the effect of supporting 1 or 2)
Judge 1 (impartial) J1 {1, 2} (votes for 1 or 2)
Judge 2 (impartial) J2 {1, 2} (votes for 1 or 2)
Judge 3 (partial) J3 {1, 2} (votes for 1 or 2; listens to S2 only, say)
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2. Draw a Bayesian network that captures the interactions between the variables. Avoid
any assumptions that you cannot make on the basis of the above description. Please
indicate which variables correspond to which nodes.

S1

S2 J1

J2

J3

E1

The description does not tell us whether the judges discuss the case amongst them-
selves. We therefore cannot make any independence assumptions between the judges
conditionally on the spokespersons. We therefore draw all possible arrows between
the judges so long as the resulting graph is acyclic. The directions of the arrows that
connect the judges are irrelevant; they are all equivalent. You could also draw an
undirected edge between each pair of judges but not bi-directional edges.

3. The graph might change if the above description had started with “A panel of three
independent judges...”. If the graph would change, please draw the new graph. Oth-
erwise state that there are no changes.

S1

S2 J1

J2

J3

E1

If the judges make their decisions independently of each other (but still contingent on
the spokespersons), we simply remove all the arrows between the judges.

4. Explain under what circumstances (setting of some of the variables etc.) we might
observe “explaining away” in the graph you just drew. If none exists, briefly explain
why not.

(For your convience, here’s a brief description of “explaining away”: When we have
multiple possible causes for a single known effect, explaining away refers to the phe-
nomenon where acquiring further evidence about the presence of one of the causes
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makes the other ones less likely.)

There is a natural explaining away effect here. Suppose we know the outcome of the
election (E1 = 1). This increases the probability that each judge individually voted
for candidate 1. If we now learn that the first two judges voted for candidate 1 (i.e.,
J1 = 1 and J2 = 1), then there’s no remaining evidence supporting that J3 voted for
candidate 1 (since the election outcome is a majority vote). The additional evidence
(J1 = 1 and J2 = 1) now fully explains the initial observation (E1 = 1).

5. (T/F – 2 points) The graph structure is useful only if it captures
all the independence properties present in the underlying probability
distribution

F

Graph structure is useful if the properties that we can derive from the
graph are true for the underlying probability distribution. It is often
the case that we cannot capture all the independence properties with a
graph.

6. (T/F – 2 points) Given any probability distribution, we can find a
Bayesian network as well as a Markov random field that is consistent
with the distribution

T

A fully connected undirected graph (or its directed quivalent) is con-
sistent with any distribution as it makes no independence assumptions
whatsoever.

7. (T/F – 2 points) A Boltzmann machine where all the variables are
observable can only capture second order statistics (means and covari-
ances) between the variables

T

When all the variables are observed, Boltzmann machines care only
about the second order statistics (recall the estimation equations in the
lecture notes). This is no longer true if there are unobserved variables
as such variables can correlate more than two observed variables (this is
analogous to the case of one underlying but unknown cause and multiple
effects).
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