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Lecture 10: complexity, model selection



Topics

• Complexity

– shattering, VC-dimension

• Model selection

– Basic idea

– Structural risk minimization



Worst case analysis

• How complex a classifier can we estimate on the basis of only a

small number of training examples?

– first we need to define exactly what we mean by complexity

– complexity is often but not always equal to the number of

parameters (degrees of freedom) in the model.

• We will define Vapnik-Chervonenkis dimension or VC-dimension

for a set of classifiers that we are considering



VC-dimension: preliminaries

• A set of classifiers F:

For example, this could be the set of all possible linear separators,

where h ∈ F means that

h(x) = sign
(
w0 + wTx

)
for some values of the parameters w, w0.

• Complexity: how many different ways can we label n training

points {x1, . . . ,xn} with classifiers h ∈ F?

In other words, how many distinct binary vectors

[h(x1) h(x2) . . . h(xn)]

do we get by trying all h ∈ F?

[ -1 1 . . . 1 ] h1
[ 1 -1 . . . 1 ] h2

. . .



VC-dimension: shattering

• A set of classifiers F shatters n points {x1, . . . ,xn} if

[h(x1) h(x2) . . . h(xn)], h ∈ F

generates all 2n distinct labelings.

• Example: linear decision boundaries shatter (any) 3 points in 2D
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but not any 4 points...



VC-dimension: shattering cont’d

• We cannot shatter 4 points in 2D with linear separators

For example, the following labeling
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cannot be produced with any linear separator

• More generally: the set of all d-dimensional linear separators can

shatter exactly d+ 1 points



VC-dimension

• The VC-dimension dV C of a set of classifiers F is the largest

number of points that F can shatter

• This is a combinatorial concept and doesn’t depend on what type

of classifiers we use, only how “flexible” the set of classifiers is

Example: Let F be a set of classifiers defined in terms of linear

combinations of m fixed basis functions

h(x) = sign (w0 + w1φ1(x) + . . .+ wmφm(x) )

dV C is at most m + 1 regardless of the form of the fixed basis

functions.



Learning and VC-dimension
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• The number of labelings that the set of classifiers can generate

over n points increases sub-exponentially after n > dV C (in this

case dV C = 100)



Learning and VC-dimension

• Finite VC-dimension is necessary and sufficient for (exponentially)

fast convergence of a learning method

By convergence we mean here:

Empirical loss︷ ︸︸ ︷
1

n

n∑
i=1

Loss(yi, h(xi))−
Expected loss︷ ︸︸ ︷

E{Loss(y, h(x)) } → 0

uniformly for all h ∈ F . Here Loss(y, h(x)) = 1 if y 6= h(x) and

zero otherwise (so called zero-one loss)

• This result holds for any underlying probability distribution from

which the examples and the labels are generated



Extensions: complexity and margin

• The number of possible labelings of points with large margin can

be dramatically less than the (basic) VC-dimension
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• The set of separating hyperplaces which attain margin γ or bet-

ter for examples within a sphere of radius R has VC-dimension

bounded by dV C(γ) ≤ R2/γ2



Topics

• Model selection

– Basic idea

– Structural risk minimization



Model selection

• Model selection concerns with trying to balance the complexity

of the model with the fit to the training data

• We need to have a (preferably) nested sequence of models of

increasing complexity

Model 1 d1
Model 2 d2
Model 3 d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• Basic formulation: we derive a model selection criterion:

Criterion = (empirical) score + Complexity penalty



Model selection cont’d

• We aim to balance the trade-off between the model complexity

and the fit to the training data

Criterion = (empirical) score + Complexity penalty

• There are a number of (related) model selection criteria

1. Statistical hypothesis test

2. Minimum description/message length (MDL/MML)

3. Structural risk minimization

etc.



Structural risk minimization

• We have a nested sequence of models of increasing complexity;

complexity measured in terms of VC-dimension (or refinements)

Model 1 dV C = d1
Model 2 dV C = d2
Model 3 dV C = d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• Basic formulation: we derive an upper bound on the expected

loss

Expected loss ≤ Empirical loss + Complexity penalty

and select the model that gives the lowest bound.



Example

• Models of increasing complexity

Model 1 K(x1,x2) = (1 + (xT1 x2))
Model 2 K(x1,x2) = (1 + (xT1 x2))2

Model 3 K(x1,x2) = (1 + (xT1 x2))3

. . . . . .

• These are nested, i.e.,

F1 ⊆ F2 ⊆ F3 ⊆ . . .

where Fk refers to the set of possible decision boundaries that

the model k can represent.

• Still need to derive the criterion...


