6.867 Machine learning and neural networks

Tommi Jaakkola MIT AI Lab

tommi@ai.mit.edu

Lecture 11: model selection, density estimation

Topics

- Model selection cont'd
 - Structural risk minimization
 - Example
- Density estimation
 - Parametric, mixture models
 - Estimation via the EM algorithm

Structural risk minimization

• We have a nested sequence of models of increasing complexity; complexity measured in terms of VC-dimension (or refinements)

Model 1
$$d_{VC} = d_1$$

Model 2 $d_{VC} = d_2$
Model 3 $d_{VC} = d_3$

where $d_1 \leq d_2 \leq d_3 \leq \ldots$

• Basic formulation: we derive an upper *bound* on the expected loss

```
Expected loss < Empirical loss + Complexity penalty
```

and select the model that gives the lowest *bound*.

Example

• Models of increasing complexity

Model 1 $K(\mathbf{x}_1, \mathbf{x}_2) = (1 + (\mathbf{x}_1^T \mathbf{x}_2))$ Model 2 $K(\mathbf{x}_1, \mathbf{x}_2) = (1 + (\mathbf{x}_1^T \mathbf{x}_2))^2$ Model 3 $K(\mathbf{x}_1, \mathbf{x}_2) = (1 + (\mathbf{x}_1^T \mathbf{x}_2))^3$

• These are nested, i.e.,

$$F_1 \subseteq F_2 \subseteq F_3 \subseteq \dots$$

where F_k refers to the set of possible decision boundaries that the model k can represent.

• Still need to derive the criterion...

Bounds on expected loss

• A single fixed classifier $h(\mathbf{x})$, n training points

With probability at least $1 - \delta$ over the choice of the training set

$$\underbrace{\text{Expected loss}}_{E\{\text{Loss}(y,h(\mathbf{x}))\}} \leq \underbrace{\frac{1}{n}\sum_{i=1}^{n}\text{Loss}(y_i,h(\mathbf{x}_i))}_{i=1} + \underbrace{\frac{1}{n}\sum_{i=1}^{n}\text{Loss}(y_i,h(\mathbf{x}_i))}_{\epsilon(n,\delta)}$$

• For the bound to be valid uniformly for all classifiers in the set *F*, we have to include the VC-dim

Structural risk minimization

• Finite VC-dimension gives us some guarantees about how close the empirical loss is to the expected loss

With probability at least $1 - \delta$ over the choice of the training set, for all $h \in F_k$

$$\underbrace{\text{Expected loss}}_{E\{\text{Loss}(y,h(\mathbf{x}))\}} \leq \underbrace{\frac{1}{n}\sum_{i=1}^{n}\text{Loss}(y_i,h(\mathbf{x}_i))}_{i=1} + \underbrace{\text{Complexity penalty}}_{\epsilon(n,\delta,d_k)}$$

where

- $d_k = VC$ -dimension of model (set of hypothesis) k $\delta = Confidence parameter (probability of failure)$
- We find model k that has the lowest bound on the expected loss

Structural risk minimization cont'd

• For our zero-one loss (classification error), we can derive the following complexity penalty (Vapnik 1995):

$$\epsilon(n,\delta,d) = \sqrt{\frac{d_{VC}(\log(2n/d_{VC})+1) + \log(1/(4\delta))}{n}}$$

- 1. This is an increasing function of d_{VC}
- 2. Increases as δ decreases
- 3. Decreases as a function of n

(this is not the only choice...)

Structural risk minimization cont'd

- Competition of terms...
 - 1. Empirical loss decreases with increasing d_{VC}
 - 2. Complexity penalty increases with increasing d_{VC}

• We find the minimum of the combined score

Structural risk minimization: example

Structural risk minimization: example cont'd

• Number of training examples n = 50, confidence parameter $\delta = 0.05$.

Model	d_{VC}	Empirical fit	Complexity penalty $\epsilon(n, \delta, d_{VC})$
1 st order	3	0.06	0.5501
2^{nd} order	6	0.06	0.6999
4^{th} order	15	0.04	0.9494
8^{th} order	45	0.02	1.2849

• Structural risk minimization would clearly select the simplest (linear) model in this case.

Topics

- Density estimation
 - Parametric, mixture models
 - Estimation via the EM algorithm

Parametric density models

- Probability model = a class of probability distributions
- Example: a simple multivariate Gaussian model

$$P(\mathbf{x}|\mu, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\{-\frac{1}{2}(\mathbf{x}-\mu)^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)\}$$

• This is a *generative model* in the sense that we can generate x's How do I generate a sample from a specific multivariate Gaussian distribution?

Gaussian samples

• 1-dimensional Gaussian probability density function (pdf) $P(x|\mu, \Sigma)$ and cumulative distribution function (cdf)

• To draw a sample from a Gaussian, we can invert the cumulative distribution function $F(x) = \int_{-\infty}^{x} P(z|\mu, \Sigma) dz$:

$$u \sim \text{Uniform}(0, 1) \Rightarrow x = F^{-1}(u) \sim P(x|\mu, \Sigma)$$

• A multivariate sample can be constructed from multiple independent one dimensional Gaussian samples $\mathbf{z} = [z_1, \dots, z_d]^T$:

$$\mathbf{x} = \mathbf{\Sigma}^{1/2} \mathbf{z} + \mu \Rightarrow \mathbf{x} \sim P(x|\mu, \mathbf{\Sigma})$$

Parametric density models

• A mixture of Gaussians model

$$P(\mathbf{x}|\theta) = \sum_{i=1}^{k} p_j P(\mathbf{x}|\mu_j, \Sigma_j)$$

where $\theta = \{p_1, \ldots, p_k, \mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k\}$ contains all the parameters of the mixture model. $\{p_j\}$ are known as *mixing proportions or coefficients*.

Mixture density

• Data generation process:

$$P(\mathbf{x}) = \sum_{j=1,2} P(y=j) \cdot P(\mathbf{x}|y=j) \quad \text{(generic mixture)}$$
$$= \sum_{j=1,2} p_j \cdot P(\mathbf{x}|\mu_j, \Sigma_j) \quad \text{(mixture of Gaussians)}$$

(exclusive events, additive probabilities)

 \bullet Any data point ${\bf x}$ could have been generated in two ways

Mixture density

• For any x, we do not know which mixture component generated it but we assume one of them did.

$$P(\mathbf{x}) = \sum_{j=1,2} P(y=j) \cdot P(\mathbf{x}|y=j)$$

• What is the posterior probability that x was generated by the first mixture component?

$$P(y=1|\mathbf{x}) = \frac{P(y=1) \cdot P(\mathbf{x}|y=1)}{\sum_{j=1,2} P(y=j) \cdot P(\mathbf{x}|y=j)} = \frac{p_1 P(\mathbf{x}|\mu_1, \Sigma_1)}{\sum_{j=1,2} p_j P(\mathbf{x}|\mu_j, \Sigma_j)}$$

• This posterior probability solves a *credit assignment* problem

Mixture density estimation

(For simplicity, we'll look at only maximum likelihood estimation)

• Suppose we want to estimate a two component mixture model.

$$P(\mathbf{x}|\theta) = p_1 P(\mathbf{x}|\mu_1, \Sigma_1) + p_2 P(\mathbf{x}|\mu_2, \Sigma_2)$$

• If each example x_i in the training set were labeled $y_i = 1, 2$ according to which mixture component (1 or 2) generated it, then the estimation would be easy.

• Labeled examples \Rightarrow no credit assignment problem

Mixture density estimation

If the examples were labeled, we could estimate each Gaussian independently of each other

• Separately for
$$j = 1, 2$$

$$\hat{n}_{j} \leftarrow \sum_{i:y_{i}=j} 1 = \# \text{ of examples labeled } j$$

$$\hat{p}_{j} \leftarrow \frac{\hat{n}_{j}}{n}$$

$$\hat{\mu}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i:y_{i}=j} \mathbf{x}_{i}$$

$$\hat{\Sigma}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i:y_{i}=j} (\mathbf{x}_{i} - \hat{\mu}_{j})(\mathbf{x}_{i} - \hat{\mu}_{j})^{T}$$

Mixture density estimation: credit assignment

- Of course we don't have such a labels ... but we can guess what the labels might be based on our current mixture distribution
- We get soft labels, posterior probabilities of which Gaussian generated which example:

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta)$$
 for all $j = 1, 2$ and $i = 1, \dots, n$

where $\sum_{j=1,2} \hat{p}(j|i) = 1$.

The EM algorithm

E-step: First we perform a soft reassignment of examples based on the current mixture distribution, i.e., we compute

$$\hat{p}(j|i) \leftarrow P(y_i = j|\mathbf{x}_i, \theta), \text{ for all } j = 1, 2 \text{ and } i = 1, \dots, n$$

M-step: Then we re-estimate the parameters (separately for the two Gaussians) based on the soft assignments.

$$\hat{n}_{j} \leftarrow \sum_{i=1}^{n} \hat{p}(j|i) = \text{Soft } \# \text{ of examples labeled } j$$

$$\hat{p}_{j} \leftarrow \frac{\hat{n}_{j}}{n}$$

$$\hat{\mu}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \hat{p}(j|i) \mathbf{x}_{i}$$

$$\hat{\Sigma}_{j} \leftarrow \frac{1}{\hat{n}_{j}} \sum_{i=1}^{n} \hat{p}(j|i) (\mathbf{x}_{i} - \hat{\mu}_{j}) (\mathbf{x}_{i} - \hat{\mu}_{j})^{T}$$

where j = 1, 2.

Mixture density estimation: example

Mixture density estimation

Mixture density estimation

The EM-algorithm

• Each iteration of the EM-algorithm *monotonically* increases the likelihood of the *n* training examples x_1, \ldots, x_n :

$$P(\text{data} | \theta) = \prod_{i=1}^{n} \left[p_1 P(\mathbf{x}_i | \mu_1, \Sigma_1) + p_2 P(\mathbf{x}_i | \mu_2, \Sigma_2) \right]$$

where $\theta = \{p_1, p_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\}$ contains all the parameters of the mixture model.

