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Lecture 11: model selection, density estimation



Topics

e Model selection cont'd
— Structural risk minimization
— Example

e Density estimation
— Parametric, mixture models
— Estimation via the EM algorithm



Structural risk minimization

e \We have a nested sequence of models of increasing complexity;
complexity measured in terms of VC-dimension (or refinements)

Model 1 dVC = dj
Model 2 dvc = do
Model 3 dy o = d3

where d1§d2§d3§...

e Basic formulation: we derive an upper bound on the expected
lOSss

Expected loss < Empirical loss + Complexity penalty

and select the model that gives the lowest bound.



Example

e Models of increasing complexity

Model 1 K(x1,x2) = (1 4+ (xTx5))
Model 2 K(x1,x5) = (1 + (x7'x5))2
Model 3 K (x1,x2) = (14 (x7'x5))3

e [ hese are nested, i.e.,
F1 CFp C F3C ...

where Fj. refers to the set of possible decision boundaries that
the model k& can represent.

e Still need to derive the criterion...



Bounds on expected loss

e A single fixed classifier h(x), n training points

>/, en3)

Expected loss
With probability at least 1 — 4 over the choice of the training set
EmpiriAcaI |OSS

Expected loss T 7 ~ sampling penalty
E{Loss(y,h(x))} < — 3 Loss(y;, h(x:)) + e(n,d)
i=1

e For the bound to be valid uniformly for all classifiers in the set
F', we have to include the VC-dim



Structural risk minimization

e Finite VC-dimension gives us some guarantees about how close
the empirical loss is to the expected loss

With probability at least 1 — 6 over the choice of the training set,
for all h € F}

Empirical loss _
Expec’aed lOSS - & ~ Complex@y penalty

rE{ LOSS(yv h(X)) P < % Z I—OSS(yia h’(XZ)) + E(n, 57 dkj
1=1

where

VC-dimension of model (set of hypothesis) k
Confidence parameter (probability of failure)

dy,
o)

e \We find model k£ that has the lowest bound on the expected loss



Structural risk minimization cont’'d

e For our zero-one loss (classification error), we can derive the
following complexity penalty (Vapnik 1995):

(n.5.d) = \/dvc(|09(2n/dvc) + 1) + log(1/(46))

n

1. This is an increasing function of dy ¢
2. Increases as § decreases
3. Decreases as a function of n

(this is not the only choice...)



Structural risk minimization cont’'d

e Competition of terms...
1. Empirical loss decreases with increasing dy ¢
2. Complexity penalty increases with increasing dy ¢
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e We find the minimum of the combined score



Structural risk minimization: example

The same pro

2

blem as in the previous lecture
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Structural risk minimization: example cont’'d

e Number of training examples n = 50, confidence parameter § =
0.05.

Model dyo Empirical fit Complexity penalty e(n, d, dy )
15t order 3 0.06 0.5501
ond order 6 0.06 0.6999
4th order 15  0.04 0.9494
gth order 45 0.02 1.2849

e Structural risk minimization would clearly select the simplest (lin-
ear) model in this case.



Topics

e Density estimation
— Parametric, mixture models
— Estimation via the EM algorithm



Parametric density models

e Probability model = a class of probability distributions
e Example: a simple multivariate Gaussian model

1

PO ™) = s

expf —(x— )T (x— )

e T his is a generative model in the sense that we can generate x's

How do I generate a sample from a specific multivariate Gaussian
distribution?



Gaussian samples

e 1-dimensional Gaussian probability density function (pdf) P(x|u, >)
and cumulative distribution function (cdf)

e [0 draw a sample from a Gaussian, we can invert the cumulative
distribution function F(x) = [, P(z|p, X)dz:

w ~ Uniform(0,1) = z = F 1(u) ~ P(z|p, )

e A multivariate sample can be constructed from multiple indepen-
dent one dimensional Gaussian samples z = [zq, .. .,zd]T:

x=3Y2z4 4 = x~ P(z|p,X)



Parametric density models

e A mixture of Gaussians model

k

P(x|0) = >  p; P(X|p;,=;)
i=1

where 0 = {p1,...,Pp, U1, -5 ME> 21,---, 2k} CONtains all the pa-
rameters of the mixture model. {p;} are known as mixing pro-
portions or coefficients.




Mixture density

e Data generation process:

P(y) i °°a,;ﬁ’:o°;iz,:°& °
"3 ‘%°“§%m@%i“’°
SNt
y:l y:2 oooooo
L 2o
Sogd ®
P(x]y=1) P(xly=2) 5
P(x) = ) P(y=j) -P(xly=j) (generic mixture)
j=1,2
= Y »pj-P|p;,X;)  (mixture of Gaussians)
j=1,2

(exclusive events, additive probabilities)

e Any data point x could have been generated in two ways



Mixture density

e FOor any x, we do not know which mixture component generated
it but we assume one of them did.

P(x) = > Ply=j) Pxly=j)
j=1,2
e \What is the posterior probability that x was generated by the first
mixture component?

Ply=1)-Pixly=1) _  p1PEp,>1)
Yi=12P(y=7) Ply=j) YXij=12p; P(X|pj, ;)

Py =1[x) =

e [ his posterior probability solves a credit assignment problem



Mixture density estimation

(For simplicity, we'll look at only maximum likelihood estimation)
e Suppose we want to estimate a two component mixture model.

P(x|0) = p1 P(x|p1,21) + po P(x|uo, X2)

e If each example x; in the training set were labeled y, = 1,2 ac-
cording to which mixture component (1 or 2) generated it, then
the estimation would be easy.

e Labeled examples = no credit assignment problem



Mixture density estimation

LY R
°Q,‘§” o ooan
If the examples were la- 3 EE P’
. %ooq?:%‘gﬁ’%?oo
beled, we could estimate @ezi‘j?
each Gaussian independently | .. .
of each other "0%09 g

e Separately for y =1,2

nj < Y 1= of examples labeled j

1Yi=]
7
- j
)
Pj n
- 1
Hj < = Z X3
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Mixture density estimation: credit assignment

e Of course we don’'t have such a labels ... but we can guess what
the labels might be based on our current mixture distribution

e \We get soft labels, posterior probabilities of which Gaussian gen-
erated which example:

p(jli) «— P(y; = j|x;,0) forall j=1,2andi=1,...,n

where 31 2 5(jli) = 1.

2

15r




The EM algorithim

E-step: First we perform a soft reassignment of examples based
on the current mixture distribution, i.e., we compute

p(jli) «— P(y; = j|x;,0), forall j=1,2andi=1,...,n

M-step: Then we re-estimate the parameters (separately for the
two Gaussians) based on the soft assignments.

n
nj «— Y p(jli) = Soft # of examples labeled j
i=1

JNe =3P
[
A

Z p(jla) (xq — i) (x; — i)



Mixture density estimation: example

%o




Mixture density estimation




Mixture density estimation




The EM-algorithim

e Each iteration of the EM-algorithm monotonically increases the
likelihood of the n training examples xq,...,Xn:

P(data|9) = |] [p1 P(xilp1, 1) + p2 P(x4|p2, X2)]
=1

where 0 = {p1,po, u1,12,21,22} contains all the parameters of
the mixture model.
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