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Lecture 11: model selection, density estimation



Topics

• Model selection cont’d

– Structural risk minimization

– Example

• Density estimation

– Parametric, mixture models

– Estimation via the EM algorithm



Structural risk minimization

• We have a nested sequence of models of increasing complexity;

complexity measured in terms of VC-dimension (or refinements)

Model 1 dV C = d1
Model 2 dV C = d2
Model 3 dV C = d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• Basic formulation: we derive an upper bound on the expected

loss

Expected loss ≤ Empirical loss + Complexity penalty

and select the model that gives the lowest bound.



Example

• Models of increasing complexity

Model 1 K(x1,x2) = (1 + (xT1 x2))
Model 2 K(x1,x2) = (1 + (xT1 x2))2

Model 3 K(x1,x2) = (1 + (xT1 x2))3

. . . . . .

• These are nested, i.e.,

F1 ⊆ F2 ⊆ F3 ⊆ . . .

where Fk refers to the set of possible decision boundaries that

the model k can represent.

• Still need to derive the criterion...



Bounds on expected loss

• A single fixed classifier h(x), n training points

ε(n,δ) 

Expected loss 

δ 

With probability at least 1− δ over the choice of the training set

Expected loss︷ ︸︸ ︷
E{Loss(y, h(x)) } ≤

Empirical loss︷ ︸︸ ︷
1

n

n∑
i=1

Loss(yi, h(xi)) +

sampling penalty︷ ︸︸ ︷
ε(n, δ)

• For the bound to be valid uniformly for all classifiers in the set
F , we have to include the VC-dim



Structural risk minimization

• Finite VC-dimension gives us some guarantees about how close

the empirical loss is to the expected loss

With probability at least 1− δ over the choice of the training set,

for all h ∈ Fk

Expected loss︷ ︸︸ ︷
E{Loss(y, h(x)) } ≤

Empirical loss︷ ︸︸ ︷
1

n

n∑
i=1

Loss(yi, h(xi)) +

Complexity penalty︷ ︸︸ ︷
ε(n, δ, dk)

where

dk = VC-dimension of model (set of hypothesis) k

δ = Confidence parameter (probability of failure)

• We find model k that has the lowest bound on the expected loss



Structural risk minimization cont’d

• For our zero-one loss (classification error), we can derive the

following complexity penalty (Vapnik 1995):

ε(n, δ, d) =

√
dV C(log(2n/dV C) + 1) + log(1/(4δ))

n

1. This is an increasing function of dV C
2. Increases as δ decreases

3. Decreases as a function of n

(this is not the only choice...)



Structural risk minimization cont’d

• Competition of terms...

1. Empirical loss decreases with increasing dV C
2. Complexity penalty increases with increasing dV C
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• We find the minimum of the combined score



Structural risk minimization: example

• The same problem as in the previous lecture
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Structural risk minimization: example cont’d

• Number of training examples n = 50, confidence parameter δ =

0.05.

Model dV C Empirical fit Complexity penalty ε(n, δ, dV C)
1st order 3 0.06 0.5501
2nd order 6 0.06 0.6999
4th order 15 0.04 0.9494
8th order 45 0.02 1.2849

• Structural risk minimization would clearly select the simplest (lin-

ear) model in this case.



Topics

• Density estimation

– Parametric, mixture models

– Estimation via the EM algorithm



Parametric density models

• Probability model = a class of probability distributions

• Example: a simple multivariate Gaussian model

P (x|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp{ −

1

2
(x− µ)TΣ−1(x− µ) }

• This is a generative model in the sense that we can generate x’s

How do I generate a sample from a specific multivariate Gaussian
distribution?



Gaussian samples

• 1-dimensional Gaussian probability density function (pdf) P (x|µ,Σ)

and cumulative distribution function (cdf)
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• To draw a sample from a Gaussian, we can invert the cumulative

distribution function F (x) =
∫ x
−∞ P (z|µ,Σ)dz:

u ∼ Uniform(0,1) ⇒ x = F−1(u) ∼ P (x|µ,Σ)

• A multivariate sample can be constructed from multiple indepen-

dent one dimensional Gaussian samples z = [z1, . . . , zd]
T :

x = Σ1/2z + µ ⇒ x ∼ P (x|µ,Σ)



Parametric density models

• A mixture of Gaussians model

P (x|θ) =
k∑
i=1

pj P (x|µj,Σj)

where θ = {p1, . . . , pk, µ1, . . . , µk,Σ1, . . . ,Σk} contains all the pa-

rameters of the mixture model. {pj} are known as mixing pro-

portions or coefficients.



Mixture density

• Data generation process:

P(x|y=1)  P(x|y=2)

y=1 y=2 

P(y) 
2 

1 

P (x) =
∑

j=1,2

P (y = j) · P (x|y = j) (generic mixture)

=
∑

j=1,2

pj · P (x|µj,Σj) (mixture of Gaussians)

(exclusive events, additive probabilities)

• Any data point x could have been generated in two ways



Mixture density

• For any x, we do not know which mixture component generated

it but we assume one of them did.

P (x) =
∑

j=1,2

P (y = j) · P (x|y = j)

• What is the posterior probability that x was generated by the first

mixture component?

P (y = 1|x) =
P (y = 1) · P (x|y = 1)∑

j=1,2P (y = j) · P (x|y = j)
=

p1 P (x|µ1,Σ1)∑
j=1,2 pj P (x|µj,Σj)

• This posterior probability solves a credit assignment problem



Mixture density estimation

(For simplicity, we’ll look at only maximum likelihood estimation)

• Suppose we want to estimate a two component mixture model.

P (x|θ) = p1P (x|µ1,Σ1) + p2P (x|µ2,Σ2)

• If each example xi in the training set were labeled yi = 1,2 ac-

cording to which mixture component (1 or 2) generated it, then

the estimation would be easy.

2 

1 

• Labeled examples ⇒ no credit assignment problem



Mixture density estimation

If the examples were la-

beled, we could estimate

each Gaussian independently

of each other

2 

1 

• Separately for j = 1,2

n̂j ←
∑

i:yi=j

1 = # of examples labeled j

p̂j ←
n̂j

n

µ̂j ←
1

n̂j

∑
i:yi=j

xi

Σ̂j ←
1

n̂j

∑
i:yi=j

(xi − µ̂j)(xi − µ̂j)T



Mixture density estimation: credit assignment

• Of course we don’t have such a labels ... but we can guess what

the labels might be based on our current mixture distribution

• We get soft labels, posterior probabilities of which Gaussian gen-

erated which example:

p̂(j|i)← P (yi = j|xi, θ) for all j = 1,2 and i = 1, . . . , n

where
∑
j=1,2 p̂(j|i) = 1.

−0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2



The EM algorithm

E-step: First we perform a soft reassignment of examples based

on the current mixture distribution, i.e., we compute

p̂(j|i)← P (yi = j|xi, θ), for all j = 1,2 and i = 1, . . . , n

M-step: Then we re-estimate the parameters (separately for the

two Gaussians) based on the soft assignments.

n̂j ←
n∑
i=1

p̂(j|i) = Soft # of examples labeled j

p̂j ←
n̂j

n

µ̂j ←
1

n̂j

n∑
i=1

p̂(j|i) xi

Σ̂j ←
1

n̂j

n∑
i=1

p̂(j|i) (xi − µ̂j)(xi − µ̂j)T

where j = 1,2.



Mixture density estimation: example
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Mixture density estimation
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Mixture density estimation
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The EM-algorithm

• Each iteration of the EM-algorithm monotonically increases the

likelihood of the n training examples x1, . . . ,xn:

P ( data |θ) =
n∏
i=1

[p1P (xi|µ1,Σ1) + p2P (xi|µ2,Σ2)]

where θ = {p1, p2, µ1, µ2,Σ1,Σ2} contains all the parameters of

the mixture model.
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