
6.867 Machine learning and neural networks

Tommi Jaakkola

MIT AI Lab

tommi@ai.mit.edu

Lecture 12: mixtures, hierarchies, and experts

Topics

• Density estimation

– Mixture models in classification, example

– Hierarchical mixture models, estimation

• Conditional density models

– experts, mixtures of experts

Review: Mixture density

• Data generation process:

P(x|y=1) P(x|y=2)

y=1 y=2

P(y)
2

1

P (x) =
∑

j=1,2

P (y = j) · P (x|y = j) (generic mixture)

=
∑

j=1,2

pj · P (x|µj,Σj) (mixture of Gaussians)

(exclusive events, additive probabilities)

• Any data point x could have been generated in two ways

Review: the EM algorithm

E-step: First we perform a soft reassignment of examples based

on the current mixture distribution, i.e., we compute

p̂(j|i)← P (yi = j|xi, θ), for all j = 1,2 and i = 1, . . . , n

M-step: Then we re-estimate the parameters (separately for the

two Gaussians) based on the soft assignments.

For each j = 1,2, we maximize the likelihood of the correspond-

ing weighted training set

n∑
i=1

P̂ (j|i) logP (xi|µj,Σj)

Review: the EM algorithm

E-step: First we perform a soft reassignment of examples based

on the current mixture distribution, i.e., we compute

p̂(j|i)← P (yi = j|xi, θ), for all j = 1,2 and i = 1, . . . , n

M-step: Then we re-estimate the parameters (separately for the

two Gaussians) based on the soft assignments.

n̂j =
n∑
i=1

p̂(j|i) = Soft # of examples labeled j

µ̂j ←
1

n̂j

n∑
i=1

p̂(j|i) xi

Σ̂j ←
1

n̂j

n∑
i=1

p̂(j|i) (xi − µ̂j)(xi − µ̂j)T

where j = 1,2.

Classification example

• A digit recognition problem (8x8 binary digits)

Training set n = 100 (50 examples of each digit).

Test set n = 400 (200 examples of each digit).

• We estimate a mixture of Gaussians model separately for each

type of digit (with varying numbers of mixture components).

Class 1: P (x|θ̂1), Class 0: P (x|θ̂0)

• Classification rule is based on the posterior class probability, or,

equivalently, based on the log-likelihood ratio:

Class = 1 if log
P (x|θ̂1)

P (x|θ̂0)
> 0 and Class = 0 otherwise

(we are assuming that each digit is equally likely a priori)

Classification example cont’d

• The figure gives the number of missclassified examples on the

test set as a function of the number of mixture components in

each digit model

0 2 4 6 8 10
26

28

30

32

34

36

38

40

42

44

• Anything wrong with this figure?

Classification example cont’d

• A single covariance matrix has 64 ∗ 65/2 = 2080 parameters, we

have n = 50 training examples...

• We can regularize the model

We assign a prior distribution (∼ Wishart) over each covariance

matrix

P (Σ|S, n′) ∝
1

|Σ|n′/2
exp

(
−
n′

2
Trace(Σ−1 S)

)
(written here in a bit non-standard way)

S = “prior” covariance matrix

n′ = equivalent sample size

Classification example cont’d

• In the resulting M-step we maximize the penalized log-likelihood

of the (weighted) training set

n∑
i=1

P̂ (j|i) logP (xi|µj,Σj) + logP (Σj|S, n′)

• Adding such a regularization penalty changes the estimation of

the covariance matrix only slightly

Σ̂j ←
1

n̂j + n′

 n∑
i=1

p̂(j|i) (xi − µ̂j)(xi − µ̂j)T + n′S


The remaining parts of the M-step are as before. Note that

the E-step is unaffected (though the resulting values for the soft

assignments will change)

Hierarchical mixture models

• We have already used a hierarchical mixture model in the digit

recognition problem

Data generation model:

P(y=1) P(y=0)

P(c=1|y=1) P(c=3|y=0)

P(x|y=0,c=3)P(x|y=1,c=1)

First level: class distinction

Second level: class contingent components (e.g., style)

Hierarchical mixture models cont’d

• The hierarchy may not in general represent class distinction⇒ the
top level division may also be unobserved for all training examples

E-step: We need to compute posterior probabilities over the
possible paths in the tree

P̂ (j, k|i)←
First level︷ ︸︸ ︷
P (y = j|x)

Second level︷ ︸︸ ︷
P (c = k|y = j,x),

where j = 1,2 and k = 1,2,3. In general the tree need not be
symmetric.

P(y=1) P(y=0)

P(c=1|y=1) P(c=3|y=0)

P(x|y=0,c=3)P(x|y=1,c=1)

Hierarchical mixture models cont’d

• The posterior over the first division

P (y = j|x) =
P (x|y = j)P (y = j)∑2

j′=1 P (x|y = j′)P (y = j′)

where the probability of generating x from the y = j branch is

P (x|y = j) =
3∑

k=1

P (c = k|y = j)P (x|y = j, c = k)

P(y=1) P(y=0)

P(c=1|y=1) P(c=3|y=0)

P(x|y=0,c=3)P(x|y=1,c=1)

Hierarchical mixture models cont’d

• The conditional posterior over the second division

P (c = k|y = j,x) =
P (x|y = j, c = k)P (c = k|y = j)∑3

k′=1 P (x|y = j, c = k′)P (c = k′|y = j)

• Note that the normalization term equals P (x|y = j), the proba-

bility of generating x from one of the branches after y = j.

• This is a term we needed for evaluating the previous posterior

⇒ perhaps we can evaluate these probabilities by propagating

information in the tree?

P(y=1) P(y=0)

P(c=1|y=1) P(c=3|y=0)

P(x|y=0,c=3)P(x|y=1,c=1)

Propagation in hierarchical mixture models

• Bottom-up phase:

P (x|y = j) =
3∑

k=1

P (x|y = j, c = k)P (c = k|y = j), j = 0,1

P (x) =
1∑

j=0

P (x|y = j)P (y = j)

P(y=1) P(y=0)

P(c=1|y=1) P(c=3|y=0)

P(x|y=0,c=3)P(x|y=1,c=1)

P(x)

P(x|y=0)

Propagation in hierarchical mixture models cont’d

• Top-down phase:

P (y = j|x) =
P (x|y = j)P (y = j)

P (x)
P (c = k, y = j|x) = P (c = k|y = j,x) × P (y = j|x)

=

[
P (x|y = j, c = k)P (c = k|y = j)

P (x|y = j)

]
× P (y = j|x)

P(y=1) P(y=0)

P(c=1|y=1) P(c=3|y=0)

P(x|y=0,c=3)P(x|y=1,c=1)

P(x)

P(x|y=0)

Hierarchical mixture models

• Can this happen?

x x
xx

x

x
x

x
x x

xxx
x
x

x
x x

xx
x x

x x
xx x

xxx

j=1j=0

j=1,k=2

j=1,k=1

j=0,k=1

j=0,k=2

Mixtures of experts

• Many regression or classification problems can be decomposed

into smaller (easier) sub problems

Examples:

1. Dealing with various styles in handwritten character recogni-

tion

2. Dealing with dialect/accent in speech recognition

etc.

• Each sub-problem can be solved by a specific “expert”

• The selection of which expert to rely on must depend on the

context (i.e., the input x)

Experts

• Suppose we have several “experts” or component regression mod-

els generating conditional Gaussian outputs

P (y|x, θi) = N(y; wT
i x + wi0, σ

2
i)

where

mean of y given x = wT
i x + wi0

variance of y given x = σ2
i

We use θi = {wi, wi0, σ
2
i } to denote the parameters of the ith

expert.

• We need to find an appropriate way of allocating tasks to these

experts (linear regression models)

Mixtures of experts

Example:

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

• Here we need a switch or a gating network that selects the ap-

propriate expert (linear regression model) as a function of the

input x

Gating network

• A simple gating network is a probability distribution over the

choice of the experts conditional on the input x

• Example: in case of two experts (0 and 1), the gating network

can be a logistic regression model

P (expert = 1|x,v, v0) = g(vTx + v0)

where g(z) = (1 + e−z)−1 is the logistic function.

• In case of m > 2 experts, the gating network can be a softmax

model

P (expert = j|x, η) =
exp(vTj x + vj0)∑m

j′=1 exp(vT
j′x + vj′0)

where η = {v1, . . . ,vm, v10, . . . , vm0} are the parameters in the

gating network

Gating network cont’d

P (expert = j|x, η) =
exp(vTj x + vj0)∑m

j′=1 exp(vT
j′x + vj′0)

x x
xx

x

x
x

x
x x

xxx
x
x

x
x x

xx
x x

x x
xx x

xxx

x x
xx

x

x
x

x
x x

xxx
x
x

x
x x

xx
x x

x x
xx x

xxx

Mixtures of experts model

• The probability distribution over the output y given x is

P (y|x, θ, η) =
m∑
j=1

P (expert = j|x, η)P (y|x, θj)

P(expert=1|x) P(expert=0|x)

P(y | expert=1,x) P(y | expert=0,x)
−3 −2 −1 0 1 2 3

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

• The allocation of experts is made conditionally on the input

• Only a single expert is assumed to be responsible for any specific

input output mapping

