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Lecture 12: mixtures, hierarchies, and experts



Topics

e Density estimation
— Mixture models in classification, example
— Hierarchical mixture models, estimation

e Conditional density models
— experts, mixtures of experts



Review: Mixture density

e Data generation process:
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(exclusive events, additive probabilities)

e Any data point x could have been generated in two ways



Review: the EM algorithm

E-step: First we perform a soft reassignment of examples based
on the current mixture distribution, i.e., we compute

p(jli) «— P(y; = j|x;,0), forall j=1,2andi=1,...,n
M-step: Then we re-estimate the parameters (separately for the
two Gaussians) based on the soft assignments.

For each 5 = 1,2, we maximize the likelihood of the correspond-
ing weighted training set
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Classification example

e A digit recognition problem (8x8 binary digits)
Training set n = 100 (50 examples of each digit).
Test set n = 400 (200 examples of each digit).

e \We estimate a mixture of Gaussians model separately for each
type of digit (with varying numbers of mixture components).

Class 1: P(x|61), Class 0: P(x|0p)

e Classification rule is based on the posterior class probability, or,
equivalently, based on the log-likelihood ratio:

g P(x|071)
P(x|6o)

(we are assuming that each digit is equally likely a priori)

Class=1if lo > 0 and Class = 0 otherwise



Classification example cont’d

e T he figure gives the number of missclassified examples on the
test set as a function of the number of mixture components in
each digit model
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e Anything wrong with this figure?



Classification example cont’d

e A single covariance matrix has 64 x 65/2 = 2080 parameters, we
have n = 50 training examples...

e \We can regularize the model

We assign a prior distribution (~ Wishart) over each covariance
matrix
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Classification example cont’d

In the resulting M-step we maximize the penalized log-likelihood
of the (weighted) training set

n
1=1

Adding such a regularization penalty changes the estimation of
the covariance matrix only slightly
. 1 n
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The remaining parts of the M-step are as before. Note that
the E-step is unaffected (though the resulting values for the soft
assignments will change)



Hierarchical mixture models

e \We have already used a hierarchical mixture model in the digit
recognition problem

Data generation model:

P(y=1) P(y=0)
P(c=1ly=1 (c=3|y=0)
P(xly=1,c=1) . ... P(xly=0,c=3)

First level: class distinction

Second level: class contingent components (e.g., style)



Hierarchical mixture models cont’'d

e [ he hierarchy may not in general represent class distinction = the
top level division may also be unobserved for all training examples

E-step: We need to compute posterior probabilities over the
possible paths in the tree

First level Second level
P(j, klt) — P(y = jlx) P(c = kly = j,x),

where 3 = 1,2 and k£ = 1,2,3. In general the tree need not be
symmetric.

P(y=1) P(y=0)

P(c=1ly=1 (c=3ly=0)

Pixly=1.c=1) ... Pxly=0,c=3)



Hierarchical mixture models cont’'d

e [ he posterior over the first division

P(xly =j)P(y =j)
Y5y Pixly =3Py =3

where the probability of generating x from the y = 35 branch is

Ply=jlx) =

3
Pxly=j)= > Plc=kly=j)Pxly=jc=k)
k=1
P(y=1) P(y=0)
P(c=1ly=1 (c=3ly=0)

P(xly=1,c=1) o ~ P(xly=0,c=3)



Hierarchical mixture models cont’'d

e [ he conditional posterior over the second division
P(x|y = j,c = k)P(c = kly = j)
>3 _ P(xly =j,c=K)P(c= K|y =j)
e Note that the normalization term equals P(x|y = j), the proba-
bility of generating x from one of the branches after y = 3.

Plc=kly=j,x) =

e [his is a term we needed for evaluating the previous posterior
= perhaps we can evaluate these probabilities by propagating
information in the tree?

P(y=1) P(y=0)

P(c=1ly=1 (c=3|y=0)

P(xly=1,c=1) o ~ P(x]y=0,c=3)



Propagation in hierarchical mixture models

e Bottom-up phase:

3
Pixly=j) = > PEly=jc=k)P(c=kly=j), j=0,1
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Propagation in hierarchical mixture models cont’d

e [op-down phase:
| P(x|ly =3)P(y = j)
Ply=ikx) = SO
= P(c=kly=14,x) x P(y = j|x)
P(xly =j,c=k)P(c=kly = j) .
(x | < P(y = jlx)

P(c=k,y = jlx)

- P(xly = j)
- P(x)
P(y=1) Py=0 P(xly=0)
P(c=1ly=1 (c=3|y=0)
P(x]y=0,c=3)

P(x|y=1,c=1)



Hierarchical mixture models

e Can this happen?

j=1,k=2




Mixtures of experts

e Many regression or classification problems can be decomposed
into smaller (easier) sub problems

Examples:

1. Dealing with various styles in handwritten character recogni-
tion

2. Dealing with dialect/accent in speech recognition
etc.

e Each sub-problem can be solved by a specific “expert”

e [ he selection of which expert to rely on must depend on the
context (i.e., the input x)



Experts

e Suppose we have several “experts’ or component regression mod-
els generating conditional Gaussian outputs

P(y|X7 62) — N(yr W?X + w;0, O-z2)
where

mean of y given x = w!x 4 w;g
variance of y given x = 07;2

We use 6; = {Wiawz’OaUz‘Q} to denote the parameters of the ;th

expert.

e \We need to find an appropriate way of allocating tasks to these
experts (linear regression models)



Mixtures of experts

Example:
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e Here we need a switch or a gating network that selects the ap-
propriate expert (linear regression model) as a function of the
input x



Gating network

e A simple gating network is a probability distribution over the
choice of the experts conditional on the input x

e Example: in case of two experts (0O and 1), the gating network
can be a logistic regression model

P(expert = 1|x,v,vg) = g(vIx 4+ vg)
where g(z) = (1 + e ?)~1 is the logistic function.
e In case of m > 2 experts, the gating network can be a softmax
model
exp(VjTX + vj0)
;7}:1 exp(vg;x + v )
where n = {vi,...,Vm,v10,---,Um0} are the parameters in the
gating network

P(expert = j|x,n) =



Gating network cont’d

exp( V;‘-FX + vj0)

;77’:1 exp( Vg;x + vig)

P(expert = jlx,n) =

X
X

x X X

M




Mixtures of experts model

e [ he probability distribution over the output y given x is

m

P(ylx,0,m) = 3 Pexpert = jlx,n) P(y[x,0;)
=1

Plexpertllx) \ P(expert=0)x) - F

P(y | expert=1x) ~ P(y |expert=0x) .. .

e [ he allocation of experts is made conditionally on the input

e Only a single expert is assumed to be responsible for any specific
input output mapping



