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Lecture 14: experts, non-parametric density estimation



Topics

• Conditional density models

– mixtures of experts, estimation

– hierarchical mixtures of experts

• Non-parametric density estimation

– Parzen windows

– Global, local kernel width



Mixtures of experts model

• The probability distribution over the (regression) output y given
the input x is a conditional mixture model

P (y|x, θ, η) =
m∑
j=1

P (expert = j|x, η)P (y|x, θj)

where η defines the parameters of the gating network (e.g., lo-
gistic) and θj are the parameters of each expert (e.g., linear
regression model).

P(expert=1|x) P(expert=0|x)

P(y | expert=1,x) P(y | expert=0,x)
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• The allocation of experts is made conditionally on the input

• Only a single expert is assumed to be responsible for any specific
input output mapping



Estimation of mixtures of experts

• The estimation would be easy if we had the assignment of which

expert should account for which training example

• In other words, if we had {(x1, k1, y1), . . . , (xn, kn, yn)}, where ki
indicates the expert assigned to the ith example

1. Separately for each expert j

Find θj that maximize
n∑

i=1: ki=j

logP (yi|xi, θj)

This is linear regression using all the data points “labeled” j.

2. For the gating network

Find η that maximize
n∑
i=1

logP (expert = ki|xi, η)

This is a softmax regression problem



Estimation of mixtures of experts

• Similarly to mixture models, we now have to evaluate the poste-

rior probability (given xi AND yi) that the output came from a

particular expert:

P̂ (j|i) ← P (expert = j|xi, yi, η, θ)

=
P (expert = j|xi, η)P (yi|xi, θj)∑m

j′=1 P (expert = j′|xi, η)P (yi|xi, θj′)
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Estimation of mixtures of experts

E-step: evaluate the posterior probabilities P̂ (j|i) that softly as-

sign experts to training examples

M-step:

1. Separately for each expert j

Find θj that maximize
n∑
i=1

P̂ (j|i) logP (yi|xi, θj)

(weighted linear regression)

2. For the gating network

Find η that maximize
n∑
i=1

m∑
j=1

P̂ (j|i) logP (expert = j|xi, η)

(weighted softmax regression)



Hierarchical mixtures of experts

• The “gates” can be arranged hierarchically:

P(j=1|x) P(j=0|x)

P(c=3|j=0,x)P(c=1|j=1,x)

P(y | j=0,c=3,x). . .. . .P(y | j=1,c=1,x)

where for example:

P (c = k|j = 1,x, ηj) =
exp( vT1kx + v1k0 )∑3

k′=1 exp( vT1k′x + v1k′0 )

• We can estimate these with the EM-algorithm similarly to hier-
archical mixture models



Topics

• Non-parametric density estimation

– Parzen windows

– Global, local kernel width



Beyond parametric density models

• More mixture densities

• We can approximate almost any distribution by including more

and more components in the mixture model

P (x|θ) =
k∑

j=1

pj P (x|µj,Σj)



Non-parametric densities

• In the limit, we can center one mixture component (e.g., Gaus-

sian) at each example (Parzen windows):

P̂n(x;σ) =
1

n

n∑
i=1

P (x|µi, σ2 I)

where µi = xi, i = 1, . . . , n.

• The covariance matrices for the components Σi = σ2 · I are all

equal and spherical.

• The single parameter σ now controls the smoothness of the den-

sity estimate

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5



One dimensional case

• The non-parametric estimate is typically written as

P̂n(x;σ) =
1

n

n∑
i=1

1

σ
K

(
x− xi
σ

)
where K(z) = exp(−z2/2)/

√
2π is known as the kernel function

(very different from SVM kernels).

• The kernel width parameter σ controls the smoothness of the
estimate

Example: n = 50, σ = 0.02
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Optimal (global) kernel width

• How do we choose the kernel width (smoothing parameter) σ?

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45



Optimal (global) kernel width

• How do we choose the kernel width (smoothing parameter) σ?
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• A general solution: cross-validation

Let P̂−in (x;σ) be a density estimate constructed on the basis of
n− 1 training examples leaving out xi.

We can find σ that maximizes the log-likelihood of the left-out
examples

CV (σ) =
n∑
i=1

log P̂−in (xi;σ)



Variable kernel width

• We can also adjust the kernel width locally

• k-nearest neighbor choice: let dik be the distance from xi to its

kth nearest neighbor

P̂n(x; k) =
1

n

n∑
i=1

1

dik
K

(
x− xi
dik

)
The estimate is smoother where there are only few data points

Example: n = 50, k = 10
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How do we choose k in this

case?


