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Lecture 16: Markov and hidden Markov models



Topics

• Markov models

– motivation, definition

– prediction, estimation

• Hidden markov models

– definition, examples

– forward-backward algorithm

– estimation via EM



Review: Markov models
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• The initial state s0 is drawn form P0(s0).

• There are a set of possible transtions from each state. These
are marked with dashed arrows and correspond to transitions for
which P1(s′|st) > 0.

• Given the current state st we draw the next state st+1 from the
one step transition probabilities P1(st+1|st)

s0 → s1 → s2 → . . .

• This is a homogeneous Markov chain where the transition prob-
ability does not change with time t



Properties of Markov chains
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s0 → s1 → s2 → . . .

• If after some finite k transitions from any state i can lead to any

other state j, the markov chain is ergodic:

P (st+k = j|st = i) > 0 for all i, j and sufficiently large k

(is the markov chain in the figure ergodic?)



Markov chains

• Problems we have to solve

1. Prediction

2. Estimation

• Prediction: Given that the system is in state st = i at time t,

what is the probability distribution over the possible states st+k

at time t+ k?

P1(st+1|st = i)

P2(st+2|st = i) =
∑
st+1

P1(st+1|st = i)P1(st+2|st+1)

P3(st+3|st = i) =
∑
st+2

P2(st+2|st = i)P1(st+3|st+2)

· · ·
Pk(st+k|st = i) =

∑
st+k−1

Pk−1(st+k−1|st = i)P1(st+k|st+k−1)

where Pk(s′|s) is the k-step transition probability matrix.



Markov chain: estimation

• We need to estimate the initial state distribution P0(s0) and the

transition probabilities P1(s′|s)

• Estimation from L observed sequences of different lengths
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Maximum likelihood estimates (observed fractions)

P̂0(s0 = i) =
1

L

L∑
l=1

δ(s(l)
0 , i)

where δ(x, y) = 1 if x = y and zero otherwise



Markov chain: estimation
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• The transition probabilities are obtained as observed fractions of

transitions out of a specific state

Joint estimate over successive states

P̂s,s′(s = i, s′ = j) =
1

(
∑L
l=1 nl)

L∑
l=1

nl−1∑
t=0

δ(s(l)
t , i)δ(s(l)

t+1, j)

and the transition probability estimates

P̂1(s′ = j|s = i) =
P̂s,s′(s = i, s′ = j)∑
k P̂s,s′(s = i, s′ = k)



Markov chain: estimation

• Can we simply estimate Markov chains from a single long se-

quence?

s0 → s1 → s2 → . . .→ sn

– What about the initial state distribution P̂0(s0)?

– Ergodicity?



Topics

• Hidden markov models

– definition, examples

– forward-backward algorithm

– estimation via EM



Hidden Markov models

• A hidden Markov model (HMM) is model where we generate a

sequence of outputs in addition to the Markov state sequence

s0
↓
O0

→ s1
↓
O1

→ s2
↓
O2

→ . . .

A HMM is defined by

1. number of states m

2. initial state distribution P0(s0)

3. state transition model P1(st+1|st)
4. output model Po(Ot|st) (discrete or continuous)

• This is a latent variable model in the sense that we will only

observe the outputs {O0, O1, . . . , On}; the state sequence remains

“hidden”



HMM example

• Two states 1 and 2; observations are tosses of unbiased coins

P0(s = 1) = 0.5, P0(s = 2) = 0.5

P1(s′ = 1|s = 1) = 0, P1(s′ = 2|s = 1) = 1

P1(s′ = 1|s = 2) = 0, P1(s′ = 2|s = 2) = 1

Po(O = heads|s = 1) = 0.5, Po(O = tails|s = 1) = 0.5

Po(O = heads|s = 2) = 0.5, Po(O = tails|s = 2) = 0.5

1 2

• This model is unidentifiable in the sense that the particular hidden

state Markov chain has no effect on the observations



HMM example: biased coins

• Two states 1 and 2; outputs are tosses of biased coins

P0(s = 1) = 0.5, P0(s = 2) = 0.5

P1(s′ = 1|s = 1) = 0, P1(s′ = 2|s = 1) = 1

P1(s′ = 1|s = 2) = 0, P1(s′ = 2|s = 2) = 1

Po(O = heads|s = 1) = 0.25, Po(O = tails|s = 1) = 0.75

Po(O = heads|s = 2) = 0.75, Po(O = tails|s = 2) = 0.25

1 2

• What type of output sequences do we get from this HMM model?



HMM example

• Continuous output model: O = [x1, x2], Po(O|s) is a Gaussian

with mean and covariance depending on the underlying state s.

Each state is initially equally likely.

1 2
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• How does this compare to a mixture of four Gaussians model?



HMMs in practice

• HMMs have been widely used in various contexts

• Speech recognition (single word recognition)

– words correspond to sequences of observations

– we estimate a HMM for each word

– the output model is a mixture of Gaussians over spectral fea-

tures

• Biosequence analysis

– a single HMM model for each type of protein (sequence of

amino acids)

– gene identification (parsing the genome)

etc.

• HMMs are closely related to Kalman filters


