Lecture 16: Markov and hidden Markov models
Topics

• Markov models
 – motivation, definition
 – prediction, estimation

• Hidden markov models
 – definition, examples
 – forward-backward algorithm
 – estimation via EM
Review: Markov models

- The initial state s_0 is drawn from $P_0(s_0)$.
- There are a set of possible transitions from each state. These are marked with dashed arrows and correspond to transitions for which $P_1(s'|s_t) > 0$.
- Given the current state s_t we draw the next state s_{t+1} from the one step transition probabilities $P_1(s_{t+1}|s_t)$

\[s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots \]

- This is a homogeneous Markov chain where the transition probability does not change with time t
Properties of Markov chains

- If after some finite k transitions from any state i can lead to any other state j, the markov chain is ergodic:

 $P(s_{t+k} = j | s_t = i) > 0$ for all i, j and sufficiently large k

(is the markov chain in the figure ergodic?)
Markov chains

• Problems we have to solve
 1. Prediction
 2. Estimation

• Prediction: Given that the system is in state $s_t = i$ at time t, what is the probability distribution over the possible states s_{t+k} at time $t + k$?

\[
P_k(s_{t+k}|s_t = i) = \sum_{s_{t+k-1}} P_{k-1}(s_{t+k-1}|s_t = i) P_1(s_{t+k}|s_{t+k-1})
\]

where $P_k(s'|s)$ is the k-step transition probability matrix.
We need to estimate the initial state distribution $P_0(s_0)$ and the transition probabilities $P_1(s'|s)$.

Estimation from L observed sequences of different lengths

\[
\begin{align*}
 s_{0}^{(1)} & \rightarrow s_{1}^{(1)} \rightarrow s_{2}^{(1)} \rightarrow \ldots \rightarrow s_{n_1}^{(1)} \\
 \ldots \\
 s_{0}^{(L)} & \rightarrow s_{1}^{(L)} \rightarrow s_{2}^{(L)} \rightarrow \ldots \rightarrow s_{n_L}^{(L)}
\end{align*}
\]

Maximum likelihood estimates (observed fractions)

\[
\hat{P}_0(s_0 = i) = \frac{1}{L} \sum_{l=1}^{L} \delta(s_{0}^{(l)}, i)
\]

where $\delta(x, y) = 1$ if $x = y$ and zero otherwise.
Markov chain: estimation

\[s_0(1) \to s_1(1) \to s_2(1) \to \ldots \to s_{n_1}(1) \]
\[\ldots \]
\[s_0(L) \to s_1(L) \to s_2(L) \to \ldots \to s_{n_L}(L) \]

- The transition probabilities are obtained as observed fractions of transitions out of a specific state.

Joint estimate over successive states

\[
\hat{P}_{s,s'}(s = i, s' = j) = \frac{1}{(\sum_{l=1}^{L} n_l)} \sum_{l=1}^{L} \sum_{t=0}^{n_{l}-1} \delta(s_{t}^{(l)}, i) \delta(s_{t+1}^{(l)}, j)
\]

and the transition probability estimates

\[
\hat{P}_1(s' = j | s = i) = \frac{\hat{P}_{s,s'}(s = i, s' = j)}{\sum_k \hat{P}_{s,s'}(s = i, s' = k)}
\]
Markov chain: estimation

- Can we simply estimate Markov chains from a single long sequence?

\[s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots \rightarrow s_n \]

- What about the initial state distribution \(\hat{P}_0(s_0) \)?
- Ergodicity?
Topics

• Hidden markov models
 – definition, examples
 – forward-backward algorithm
 – estimation via EM
A hidden Markov model (HMM) is a model where we generate a sequence of outputs in addition to the Markov state sequence

\[
s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots
\]

\[
\downarrow \quad \downarrow \quad \downarrow
\]

\[
O_0 \quad O_1 \quad O_2
\]

A HMM is defined by
1. number of states \(m \)
2. initial state distribution \(P_0(s_0) \)
3. state transition model \(P_1(s_{t+1}|s_t) \)
4. output model \(P_o(O_t|s_t) \) (discrete or continuous)

This is a latent variable model in the sense that we will only observe the outputs \(\{O_0, O_1, \ldots, O_n\} \); the state sequence remains "hidden"
HMM example

- Two states 1 and 2; observations are tosses of unbiased coins

\[
P_0(s = 1) = 0.5, \quad P_0(s = 2) = 0.5
\]
\[
P_1(s' = 1|s = 1) = 0, \quad P_1(s' = 2|s = 1) = 1
\]
\[
P_1(s' = 1|s = 2) = 0, \quad P_1(s' = 2|s = 2) = 1
\]
\[
P_o(O = \text{heads}|s = 1) = 0.5, \quad P_o(O = \text{tails}|s = 1) = 0.5
\]
\[
P_o(O = \text{heads}|s = 2) = 0.5, \quad P_o(O = \text{tails}|s = 2) = 0.5
\]

- This model is *unidentifiable* in the sense that the particular hidden state Markov chain has no effect on the observations
HMM example: biased coins

- Two states 1 and 2; outputs are tosses of *biased* coins

\[
\begin{align*}
P_0(s = 1) &= 0.5, \quad P_0(s = 2) = 0.5 \\
P_1(s' = 1 | s = 1) &= 0, \quad P_1(s' = 2 | s = 1) = 1 \\
P_1(s' = 1 | s = 2) &= 0, \quad P_1(s' = 2 | s = 2) = 1 \\
P_o(O = \text{heads} | s = 1) &= 0.25, \quad P_o(O = \text{tails} | s = 1) = 0.75 \\
P_o(O = \text{heads} | s = 2) &= 0.75, \quad P_o(O = \text{tails} | s = 2) = 0.25
\end{align*}
\]

- What type of output sequences do we get from this HMM model?
HMM example

- Continuous output model: $O = [x_1, x_2]$, $P_o(O|s)$ is a Gaussian with mean and covariance depending on the underlying state s. Each state is initially equally likely.

- How does this compare to a mixture of four Gaussians model?
HMMs in practice

- HMMs have been widely used in various contexts

- Speech recognition (single word recognition)
 - words correspond to sequences of observations
 - we estimate a HMM for each word
 - the output model is a mixture of Gaussians over spectral features

- Biosequence analysis
 - a single HMM model for each type of protein (sequence of amino acids)
 - gene identification (parsing the genome)

 etc.

- HMMs are closely related to Kalman filters