6.867 Machine learning and neural networks

Tommi Jaakkola
MIT AI Lab

tommi®@ai.mit.edu

Lecture 16: Markov and hidden Markov models



Topics

e Markov models
— motivation, definition
— prediction, estimation

e Hidden markov models
— definition, examples
— forward-backward algorithm
— estimation via EM



Review: Markov models
Py(s; %1 )

The initial state sg is drawn form Py(sg).

There are a set of possible transtions from each state. These
are marked with dashed arrows and correspond to transitions for
which Py(s’|st) > 0.

Given the current state s; we draw the next state s, ; from the
one step transition probabilities Py (s;41]s¢t)
S)p — S1 — S — ...

This is a homogeneous Markov chain where the transition prob-
ability does not change with time ¢



Properties of Markov chains

S — S1 — S — ...

e If after some finite k transitions from any state ¢ can lead to any
other state 3, the markov chain is ergodic:

P(si4r = jlst = i) > 0 for all ¢,5 and sufficiently large k

(is the markov chain in the figure ergodic?)



Markov chains

e Problems we have to solve
1. Prediction
2. Estimation

e Prediction: Given that the system is in state s; = ¢ at time ¢,
what is the probability distribution over the possible states s;4
at time ¢t + k7

P1(s441]5t = 1)

Py(sianlst =1) = >  Pi(si+1lst = 1) P1(sp42]5¢+1)
St+1

P3(sia3lst =1) = Y Po(sptol|st = 1) P1(sp43]5¢42)
St+2

Py(siqrlse=1) = ) Py_1(siqr—1lst = 1) Pr(spqplst4r—1)
Sttk—1

where P.(s'|s) is the k-step transition probability matrix.



Markov chain: estimation

e \We need to estimate the initial state distribution Py(sg) and the
transition probabilities P;(s’|s)

e Estimation from L observed sequences of different lengths
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Maximum likelihood estimates (observed fractions)

Po(sg=i) = — Z 5(sP, )

where §(x,y) = 1 if x =y and zero otherwise



Markov chain: estimation

&(1) (1) (L _ (1)
0

— S{ 7 — 85 — ... Sp;
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e [ he transition probabilities are obtained as observed fractions of
transitions out of a specific state

Joint estimate over successive states
L n;—1

Ps,s’(s — i,s/ =j) = (Zl_ ) l;:l tz:o 5(8 2)5(8t+1,])

and the transition probability estimates

'=1)

Sk ]58,8/(3 =1i,8 = k)

Py g(s =1,s

Pi(s'=jls =1) =




Markov chain: estimation

e Can we simply estimate Markov chains from a single long se-
quence’?

S) — 81 — 82 — ... — Sp

— What about the initial state distribution Py(sg)?
— Ergodicity?



Topics

e Hidden markov models
— definition, examples
— forward-backward algorithm
— estimation via EM



Hidden Markov models

e A hidden Markov model (HMM) is model where we generate a
sequence of outputs in addition to the Markov state sequence

so)p — 81 — 82 — ...
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A HMM is defined by

1. number of states m

2. initial state distribution Py(sp)

3. state transition model Py (s;41]s¢)

4. output model P,(O¢|st) (discrete or continuous)

e [ his is a latent variable model in the sense that we will only
observe the outputs {Oqg,O1,...,0y}; the state sequence remains
“hidden”



HMM example

e Two states 1 and 2; observations are tosses of unbiased coins

Py(s=1) = 0.5, Po(s=2)=0.5
Pi(ss=1ls=1)=0, Pi(§ =2ls=1)=1
Pi(ss=1s=2)=0, Pi(§ =2[s=2)=1

Po(O = heads|s =1) = 0.5, P,(O =tails|s=1) =0.5
P,(O = heads|s =2) = 0.5, P,(O = tails|s=2) = 0.5

e [ his model is unidentifiable in the sense that the particular hidden
state Markov chain has no effect on the observations



HMM example: biased coins

e Two states 1 and 2; outputs are tosses of biased coins

Py(s=1)=0.5, Py(s=2)=0.5
Pi(ss=1s=1)=0, Pi(§ =2]s=1)=1
Pi(ss=1s=2)=0, Pi(s§ =2]s=2)=1

Py,(O = heads|s = 1) = 0.25, P,(O = tails|s=1) = 0.75
Py,(O = heads|s = 2) = 0.75, P,(O = tails|s =2) = 0.25

e \What type of output sequences do we get from this HMM model?



HMM example

e Continuous output model: O = [z1,23], Po(O|s) is a Gaussian

with mean and covariance depending on the underlying state s.
Each state is initially equally likely.
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e How does this compare to a mixture of four Gaussians model?



HMMS in practice

HMMs have been widely used in various contexts

Speech recognition (single word recognition)

— words correspond to sequences of observations

— we estimate a HMM for each word

— the output model is a mixture of Gaussians over spectral fea-
tures

Biosequence analysis

— a single HMM model for each type of protein (sequence of
amino acids)

— gene identification (parsing the genome)

etc.

HMMs are closely related to Kalman filters



