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Lecture 17: HMM estimation/inference



Topics

e Hidden markov models
— forward-backward algorithm
— estimation via EM



Review: hidden Markov models

e A hidden Markov model (HMM) is model where we generate a
sequence of outputs in addition to the Markov state sequence
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A HMM is defined by

1. number of states m

2. initial state distribution Py(sp)

3. state transition model Py (s;41]s¢)

4. output model P,(O¢|st) (discrete or continuous)

e [ his is a latent variable model in the sense that we will only
observe the outputs {Oqg,O1,...,0y}; the state sequence remains
“hidden”



HMM problems

e [ here are several problems we have to solve

1. How do we evaluate the probability that our model generated
the observation sequence {Oq,O01,...,0,}7

— forward-backward algorithm

2. How do we uncover the most likely hidden state sequence
corresponding to these observations?

— dynamic programming

3. How do we adapt the parameters of the HMM to better ac-
count for the observations?

— the EM-algorithm



Probability of observed data

In principle computing the probability of the observed sequence
involves summing over exponentially many possible hidden state
sequences

Prob. given a specificAhidden state sequence
P(Og,...,0On) = > Po(s0)P1(Og|sg) - - - P1(sn|sp—1) Po(Onlsn)
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We can, however, exploit the structure of the model to evaluate
the probability much more efficiently



Forward-backward algorithm
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Op = heads, O1 = tails, O = heads
e Forward probabilities ay(7):
at(i) = P(Oq,...,0¢ s = 1)

o (1) .
= P =1|0p,...,0
5 e (5) (st = i|Og ¢)

(tracking etc; discrete state Kalman filter)
e Backward propabilities G:(7):
Bi(i) = P(Oy41,-..,0n|st = 1)
(evidence about the current state from future observations)




Recursive forward updates

D 31 2
Og = heads, O1 = tails, O> = heads

e Forward recursion: «a4(i) = P(Oq,...,0, 8t = 1)
ag(l) = Py(1l) Py(heads|1)
ag(2) = Py(2) Py(heads|2)
01(1) = [ao(1)P1(1]1) 4+ ap(2) P1(1]2)] Po(tails|1)

21(2) = [ao(1)P1(2]1) 4 ap(2) P1(2]2)] Po(tails|2)
e More generally:

ag (1) Po(so = 1) Po(Oplsp = 1)

ar(i) = |2 a-1()) Pi(st = ilsi—1 = )| Po(Oulst = i)
J



Recursive backward updates

D 3 2
Op = heads, O1 = tails, O = heads

e Backward recursion: B¢(i) = P(Ou41,-..,0n|st = 1)

Go(1) = 1
B2(2) = 1
B1(1) = P1(1|1)Ps(heads|1)B2(1) + P1(2]1)Po(heads|2)32(2)

B1(2) = P1(1]2)Po(heads|1)B2(1) + P1(2]2) Po(heads|2)B2(2)
e More generally:

Br(2)
Br—1(2)

1

Z.Pl(St = j|8t_1 = Z.)F)O(Ot|5t =J) 6t(j)
J



Forward/backward probabilities
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The forward/backward probabilities
at(i) = P(Ogp,...,0 s =1)

Bi(i) = P(O¢t1,...,0n|st =1)
permit us to evaluate various posterior probabilities

For example, the probability of generating the observations and
going through state 2z at time t is

P(Oq,...,0n,st = 1) = oy(3) B¢ (1)

Summing over the possible states at time ¢ gives back

P(Og....,0n) = Y ax()Bi(5), for any t=0,...,n
J



Forward/backward probabilities cont’d
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ar(i) = P(Oq,...,0¢, s = 1) current estimate about s

Bi(i) = P(O441,...,0n|sy =) future evidence about s;
e Using these probabilities we can compute the posterior probability
that the HMM was in a particular state ¢ at time ¢

_ _oq(0)Be(i)  def .
P(st=1lOo, .., On) > a(5) () ()




Forward/backward probabilities cont’d
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at(i) = P(Oq,...,04 st = 1) current estimate about s;

Bi+1(G) = P(Ou42,...,0n|s;41 = j) future evidence about sy

e \We can also compute the posterior probability that the system
was in state ¢ at time ¢t AND transitioned to state 5 at time t+1:

P(St — iast—l-l :]|00770n)
fixed 1+ — 3 transitign, one observation
ar(i) Pi(sig1 =jlst = 1) Po(Opx1lsi41 =3) Bir1()
> a(5)Be(5)

Yo, ),

where t =20,...,n— 1.



The EM algorithm for HMMs

Assume we have L observation sequences Om ...,Or,(ﬁfl)

E-step: compute the posterior probabilities
q/t(l)(i) for all I, 4, and t (t=0,...,n;)
eD@i,5) foralll, i, and t (t=0,...,n; — 1)

M-step:

The initial state distribution can be updated according to the
expected fraction of times the sequences started from a specific
state 1

Poi) Z 76 (0)



M-step cont’d

To update the transtion probabilities, we first define the expected
number of transitions from ¢ to j

L n-—-1
NG = 3 3 &P, 5)
=1 t=0
e [ he maximum likelihood estimate of the transition probabilities
IS then a ratio of these soft counts

N(i,j)  # transitions i — j
SuN(i,j)  # visits to i

Py (j1)

e \What about the output distributions?



M-step cont’d

e If the outputs are discrete, we define the expected number of
times a particular observations say O = k was generated from a
specific state 1

- L W)
NO(iv k) — Z Z ’Vt (7’) 5(015 7k)
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where 5(O§l),k) =1if Ogl) = k and zero otherwise.

The ML estimate is the ratio of this to the expected number of
visits to 1

No(i, k) ~_ # outputs k in state ¢

P, (ki a —
o (ki) > No(i, k) # visits to i




M-step cont’d

e If the outputs are continuous (e.g., multi-variate Gaussian), we
have to solve a weighted maximum likelihood estimation problem

Separately for each ¢« we maximize:
L

3 flj + (i) 1og POV 1)

[=1t=0



