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Topics

• Hidden markov models

– forward-backward algorithm

– estimation via EM



Review: hidden Markov models

• A hidden Markov model (HMM) is model where we generate a

sequence of outputs in addition to the Markov state sequence

s0
↓
O0

→ s1
↓
O1

→ s2
↓
O2

→ . . .

A HMM is defined by

1. number of states m

2. initial state distribution P0(s0)

3. state transition model P1(st+1|st)
4. output model Po(Ot|st) (discrete or continuous)

• This is a latent variable model in the sense that we will only

observe the outputs {O0, O1, . . . , On}; the state sequence remains

“hidden”



HMM problems

• There are several problems we have to solve

1. How do we evaluate the probability that our model generated

the observation sequence {O0, O1, . . . , On}?
– forward-backward algorithm

2. How do we uncover the most likely hidden state sequence

corresponding to these observations?

– dynamic programming

3. How do we adapt the parameters of the HMM to better ac-

count for the observations?

– the EM-algorithm



Probability of observed data

• In principle computing the probability of the observed sequence

involves summing over exponentially many possible hidden state

sequences

P (O0, . . . , On) =
∑

s0,...,sn

Prob. given a specific hidden state sequence︷ ︸︸ ︷
P0(s0)P1(O0|s0) . . . P1(sn|sn−1)Po(On|sn)

s0
↓
O0

→ s1
↓
O1

→ s2
↓
O2

→ . . .→ sn−1
↓

On−1

→ sn
↓
On

• We can, however, exploit the structure of the model to evaluate

the probability much more efficiently



Forward-backward algorithm

s0
↓
O0

→ s1
↓
O1

→ s2
↓
O2 s0 s2s1

1

2

O0 = heads, O1 = tails, O2 = heads

• Forward probabilities αt(i):

αt(i) = P (O0, . . . , Ot, st = i)
αt(i)∑
j αt(j)

= P (st = i|O0, . . . , Ot)

(tracking etc; discrete state Kalman filter)

• Backward propabilities βt(i):

βt(i) = P (Ot+1, . . . , On|st = i)

(evidence about the current state from future observations)



Recursive forward updates

s0 s2s1

1

2

O0 = heads, O1 = tails, O2 = heads

• Forward recursion: αt(i) = P (O0, . . . , Ot, st = i)

α0(1) = P0(1)Po(heads|1)

α0(2) = P0(2)Po(heads|2)

α1(1) =
[
α0(1)P1(1|1) + α0(2)P1(1|2)

]
Po(tails|1)

α1(2) =
[
α0(1)P1(2|1) + α0(2)P1(2|2)

]
Po(tails|2)

• More generally:

α0(i) = P0(s0 = i)Po(O0|s0 = i)

αt(i) =
[∑
j

αt−1(j)P1(st = i|st−1 = j)
]
Po(Ot|st = i)



Recursive backward updates

s0 s2s1

1

2

O0 = heads, O1 = tails, O2 = heads

• Backward recursion: βt(i) = P (Ot+1, . . . , On|st = i)

β2(1) = 1

β2(2) = 1

β1(1) = P1(1|1)Po(heads|1)β2(1) + P1(2|1)Po(heads|2)β2(2)

β1(2) = P1(1|2)Po(heads|1)β2(1) + P1(2|2)Po(heads|2)β2(2)

• More generally:

βn(i) = 1

βt−1(i) =
∑
j

P1(st = j|st−1 = i)Po(Ot|st = j)βt(j)



Forward/backward probabilities

s0
↓
O0

→ s1
↓
O1

→ s2
↓
O2

→ . . .→ sn−1
↓

On−1

→ sn
↓
On

• The forward/backward probabilities

αt(i) = P (O0, . . . , Ot, st = i)

βt(i) = P (Ot+1, . . . , On|st = i)

permit us to evaluate various posterior probabilities

For example, the probability of generating the observations and

going through state i at time t is

P (O0, . . . , On, st = i) = αt(i)βt(i)

Summing over the possible states at time t gives back

P (O0, . . . , On) =
∑
j

αt(j)βt(j), for any t = 0, . . . , n



Forward/backward probabilities cont’d

s0
↓
O0

→ . . .→ st
↓
Ot

→ st+1
↓

Ot+1

→ . . .→ sn
↓
On

αt(i) = P (O0, . . . , Ot, st = i) current estimate about st

βt(i) = P (Ot+1, . . . , On|st = i) future evidence about st

• Using these probabilities we can compute the posterior probability

that the HMM was in a particular state i at time t

P (st = i|O0, . . . , On) =
αt(i)βt(i)∑
j αt(j)βt(j)

def
= γt(i)



Forward/backward probabilities cont’d

s0
↓
O0

→ . . .→ st
↓
Ot

→ st+1
↓

Ot+1

→ . . .→ sn
↓
On

αt(i) = P (O0, . . . , Ot, st = i) current estimate about st

βt+1(j) = P (Ot+2, . . . , On|st+1 = j) future evidence about st+1

• We can also compute the posterior probability that the system

was in state i at time t AND transitioned to state j at time t+ 1:

P (st = i, st+1 = j|O0, . . . , On)

=
αt(i)

fixed i→ j transition, one observation︷ ︸︸ ︷
P1(st+1 = j|st = i)Po(Ot+1|st+1 = j) βt+1(j)∑

j αt(j)βt(j)
def
= ξt(i, j),

where t = 0, . . . , n− 1.



The EM algorithm for HMMs

Assume we have L observation sequences O(l)
0 , . . . , O

(l)
nl

E-step: compute the posterior probabilities

γ
(l)
t (i) for all l, i, and t (t = 0, . . . , nl)

ξ
(l)
t (i, j) for all l, i, and t (t = 0, . . . , nl − 1)

M-step:

The initial state distribution can be updated according to the

expected fraction of times the sequences started from a specific

state i

P̂0(i) ←
1

L

L∑
l=1

γ
(l)
0 (i)



M-step cont’d

To update the transtion probabilities, we first define the expected

number of transitions from i to j

N̂(i, j) =
L∑
l=1

n−1∑
t=0

ξ
(l)
t (i, j)

• The maximum likelihood estimate of the transition probabilities

is then a ratio of these soft counts

P̂1(j|i) ←
N̂(i, j)∑
j′ N̂(i, j′)

=
# transitions i→ j

# visits to i

• What about the output distributions?



M-step cont’d

• If the outputs are discrete, we define the expected number of

times a particular observations say O = k was generated from a

specific state i

N̂o(i, k) =
L∑
l=1

nl∑
t=0

γ
(l)
t (i) δ(O(l)

t , k)

where δ(O(l)
t , k) = 1 if O(l)

t = k and zero otherwise.

The ML estimate is the ratio of this to the expected number of

visits to i

P̂o(k|i) ←
N̂o(i, k)∑
k′ N̂o(i, k

′)
=

# outputs k in state i

# visits to i



M-step cont’d

• If the outputs are continuous (e.g., multi-variate Gaussian), we

have to solve a weighted maximum likelihood estimation problem

Separately for each i we maximize:

L∑
l=1

nl∑
t=0

γ
(l)
t (i) logP (O(l)

t |i)


