Lecture 18: viterbi, linear HMMs
Topics

- Hidden markov models
 - dynamic programming
 - alignment examples
 - linear HMMs
HMM problems

• There are several problems we have to solve

 1. How do we evaluate the probability that our model generated the observation sequence \(\{O_0, O_1, \ldots, O_n\} \)?
 – forward-backward algorithm

 2. How do we uncover the most likely hidden state sequence corresponding to these observations?
 – dynamic programming

 3. How do we adapt the parameters of the HMM to better account for the observations?
 – the EM-algorithm
Dynamic programming (Viterbi)

- The probability of generating a particular hidden state sequence $s_0 = 1$, $s_1 = 2$, $s_2 = 1$ and the observations is

$$P_0(1)P_o(heads|1) \times P_1(2|1)P_o(tails|2) \times P_1(1|2)P_o(heads|1)$$

$$\rightarrow s_0 \downarrow \rightarrow s_1 \downarrow \rightarrow s_2 \downarrow$$

$O_0 = heads$, $O_1 = tails$, $O_2 = heads$
Dynamic programming (Viterbi)

\[O_0 = \text{heads}, \ O_1 = \text{tails}, \ O_2 = \text{heads} \]

- The probability of the most likely (partial) state sequence and the corresponding observations:

\[\delta_t(i) = \max_{s_0, \ldots, s_{t-1}} \left\{ P(s_0)P_o(O_0|s_0) \cdots P_1(s_t = i|s_{t-1}) \right\} P_o(O_t|s_t = i) \]

- Recursive updates (cf. forward probabilities)

\[
\begin{align*}
\delta_0(j) & = P_0(j)P_o(\text{heads}|j), \ j = 1, 2 \\
\delta_1(1) & = \max \left\{ \delta_0(1)P_1(1|1), \ \delta_0(2)P_1(1|2) \right\} \times P_o(\text{tails}|1) \\
\delta_1(2) & = \max \left\{ \delta_0(1)P_1(2|1), \ \delta_0(2)P_1(2|2) \right\} \times P_o(\text{tails}|2) \\
\ldots
\end{align*}
\]
Dynamic programming: properties

Red path (dotted): most likely path landing on $s_2 = 2$
Blue path (dashed): most likely path landing on $s_2 = 1$

• Possible?
Dynamic programming: backtracking

- The most likely value for state s_2 is the one that corresponds to the most likely path

$$s_2^* = \arg \max \{ \delta_2(1), \delta_2(2) \}$$

(say $s_2^* = 1$ as in the figure)

- The most likely previous state is

$$s_1^* = \arg \max \{ \delta_1(1)P_1(1|1), \delta_1(2)P_1(1|2) \}$$

and so on...

- Why don’t we have to worry about the observations here?
Uses of Dynamic programming

- Annotating or parsing a sequence of speech

Never touch a snake with your bare hands
Uses of Dynamic programming

- Annotating a protein sequence (sequence of amino acids) with markers of “conserved” regions

- Multiple alignment of sequences relative to the markers

- VKGHGKVVADALTNAVAHVDD.....MPNALSALSDLHA....HKLRLDPV.NFKLLSHCLLVTLLAALHP
 KVKAHGGKVLGAFSDGLAHLDN.....LKGTFATLSELHC....DKLHVDPE.NFRLGNVLVCVLAAHHP
 DLAHHGVTVLTIALGILKKKHG.....HEAEKPLAQLSHA....TK-HKIPIkYLEFISEAIIHVLHRSHP
 PFETHANRIVGFFSKIIIGELPN.....IEADVNTFVASHK....PR-GVTHD.QLNNFRAGFVSYMKAH--
 DVRWHAERIINAVNDMSMDDtek..MSMKLRDLGSKHA....KSFQVDPQ.YFKVLAAVIADTVAA---
 ELQAHAGKVFKLVYEAAIQLQVtvvTyvDAtLKLNGSvVH...SK-GVADA.HFPVVKIAIKTKEVVG
 GVAALGAKVL AQIGVAVS LLDegk....MVAQMKAVGVRHKgygNK-HIKAQ.YFEPLGASLLSAMEHRIG
A linear HMM model

- To align sequences to a model we want the model to be “linear”

Example: two representations of a “linear” Markov model
A linear HMM model for protein sequences

- There are three types of states:
 1. *Match states* m_1, m_2, \ldots. These try to capture conserved pieces of the sequences
 2. *Insert states* i_1, i_2, \ldots. These model inserted amino acid residues between the conserved regions
 3. *Delete states* d_2, d_3, \ldots. These permit us to skip a match state

- Only *insert* and *match* states can generate any output (one of 20 possible amino acid letters)
• This is a linear architecture in the sense that, for example, you will never come back to a match state m_1 once you have visited it or skipped it.

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$$

The state s_0 can be any of \{i$_1$, \ldots, i$_{50}$, d$_1$, \ldots, d$_{50}$, m$_1$, \ldots, m$_{50}$\}

If $s_t = m_{49}$, s_{t+1} can be any of \{i$_{50}$, d$_{50}$, m$_{50}$\}

• State variables and observations are no longer in correspondence

$$(s_0 = m_1) \rightarrow (s_1 = d_2) \rightarrow (s_2 = i_2) \rightarrow \downarrow \downarrow \downarrow
O_0 O_1$$
Properties of linear HMMs

- The linear architecture has a computational advantage: cost is linear in the number of states in the model, not quadratic.

- Given any protein (sequence of amino acid letters) we can compute the corresponding most likely hidden state sequence:

 \[\begin{array}{ccccccc}
 G & L & S & A & A & \ldots \\
 i_1 & i_2 & m_3 & m_4 & i_5 & \ldots \\
 V & K & G & H & G & \ldots \\
 m_4 & m_5 & i_8 & i_9 & m_{10} & \ldots
 \end{array} \]

- Multiple sequences can be aligned based on the associated match states.
Model based multiple alignment: example

- A single HMM trained for the globin family
- Resulting alignments to the model (match states)

```
-VKGHGKKVADALTNAVAHVDD.....MPNALSAALSDLHA...HKLRVDPV.NFKLLSHCLLVTLLAAHLHP
KVKAHGKVKVLGAFSDGLAHLDN.....LKGTFATLSLHC...DKLHVDE.NFRLLGNVLCVLAHHFG
DLKKGVTVLTLGAILKKKGH.....HEAELKPLAQSHA...TK-HKIPIkYLEFISEAIHVLHRSRHP
PFETHANRIVGFSSKIIGELPN.....IEADVNTFVASHK...PR-GVTHD.QLLNNFRAGFVSYMKAH--
DVRWAHERINAVNDAVASMDDtek..MSMKLRLDSGKHA...KSFQVDPQ.YFKVLAAVIAADTVAA---
ELQAHAGKFVKLVYEAAIQLQVtvvTDLATKLNGSVHV...SK-GVADA.HFPVVKAILKTIKEVVG
GVAALGAKVLAQIGVAVSLGDevk..MVAQMKAVGVVRHKgygNK-HIKAQ.YFEPGLASLLSAMEHRIG
```

uppercase letters = match states
lowercase letter = insert states
'-' = delete states
'.' = fill character (for pretty alignment only)