6.867 Machine learning and neural networks

Tommi Jaakkola MIT AI Lab

tommi@ai.mit.edu

Lecture 18: viterbi, linear HMMs

Topics

- Hidden markov models
 - dynamic programming
 - alignment examples
 - linear HMMs

HMM problems

- There are several problems we have to solve
 - 1. How do we evaluate the probability that our model generated the observation sequence $\{O_0, O_1, \ldots, O_n\}$?
 - forward-backward algorithm
 - 2. How do we uncover the most likely hidden state sequence corresponding to these observations?
 - dynamic programming
 - 3. How do we adapt the parameters of the HMM to better account for the observations?
 - the EM-algorithm

Dynamic programming (Viterbi)

Dynamic programming (Viterbi)

• The probability of the most likely (partial) state sequence and the corresponding observations:

 $\delta_t(i) = \max_{s_0, \dots, s_{t-1}} \left\{ P(s_0) P_o(O_0 | s_0) \cdots P_1(s_t = i | s_{t-1}) \right\} P_o(O_t | s_t = i)$

• Recursive updates (cf. forward probabilities)

$$\begin{split} \delta_0(j) &= P_0(j) P_o(heads|j), \ j = 1,2\\ \delta_1(1) &= \max\{\delta_0(1) P_1(1|1), \delta_0(2) P_1(1|2)\} \times P_o(tails|1)\\ \delta_1(2) &= \max\{\delta_0(1) P_1(2|1), \delta_0(2) P_1(2|2)\} \times P_o(tails|2) \end{split}$$

Dynamic programming: properties

Red path (dotted): most likely path landing on $s_2 = 2$ Blue path (dashed): most likely path landing on $s_2 = 1$

• Possible?

Dynamic programming: backtracking

 The most likely value for state s₂ is the one that corresponds to the most likely path

$$s_2^* = \arg \max \{ \delta_2(1), \delta_2(2) \}$$

(say $s_2^* = 1$ as in the figure)

• The most likely previous state is

$$s_1^* = \operatorname{argmax} \{ \delta_1(1) P_1(1|1), \delta_1(2) P_1(1|2) \}$$

and so on...

• Why don't we have to worry about the observations here?

Uses of Dynamic programming

• Annotating or parsing a sequence of speech

Never touch a snake with your bare hands

Uses of Dynamic programming

 Annotating a protein sequence (sequence of amino acids) with markers of "conserved" regions

	m_1	m_2	—	
G	S	Α	А	• • •

• Multiple alignment of sequences relative to the markers

-VKGHGKKVADALTNAVAHVDD....MPNALSALSDLHA...HKLRVDPV.NFKLLSHCLLVTLAAHLP KVKAHGKKVLGAFSDGLAHLDN....LKGTFATLSELHC...DKLHVDPE.NFRLLGNVLVCVLAHHFG DLKKHGVTVLTALGAILKKKGH....HEAELKPLAQSHA...TK-HKIPIkYLEFISEAIIHVLHSRHP PFETHANRIVGFFSKIIGELPN....IEADVNTFVASHK...PR-GVTHD.QLNNFRAGFVSYMKAH--DVRWHAERIINAVNDAVASMDDtek.MSMKLRDLSGKHA...KSFQVDPQ.YFKVLAAVIADTVAA---ELQAHAGKVFKLVYEAAIQLQVtgvvvTDATLKNLGSVHV...SK-GVADA.HFPVVKEAILKTIKEVVG GVAALGAKVLAQIGVAVSHLGDegk.MVAQMKAVGVRHKgygNK-HIKAQ.YFEPLGASLLSAMEHRIG

A linear HMM model

• To align sequences to a model we want the model to be "linear" Example: two representations of a "linear" Markov model

seq 3

A linear HMM model for protein sequences

• There are three types of states:

- 1. *Match states* m_1, m_2, \ldots These try to capture conserved pieces of the sequences
- 2. *Insert states* i_1, i_2, \ldots These model inserted amino acid residues between the conserved regions
- 3. Delete states d_2, d_3, \ldots These permit us to skip a match state
- Only *insert* and *match* states can generate any output (one of 20 possible amino acid letters)

 This is a linear architecture in the sense that, for example, you will never come back to a match state m₁ once you have visited it or skipped it.

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \dots$$

The state s_0 can be any of $\{i_1, \ldots, i_{50}, d_1, \ldots, d_{50}, m_1, \ldots, m_{50}\}$ If $s_t = m_{49}$, s_{t+1} can be any of $\{i_{50}, d_{50}, m_{50}\}$

• State variables and observations are no longer in correspondence

$$\begin{array}{cccc} (s_0 = m_1) & \rightarrow & (s_1 = d_2) & \rightarrow & (s_2 = i_2) & \rightarrow \\ & \downarrow & & \downarrow & & \downarrow \\ & O_0 & & & O_1 \end{array}$$

- The linear architecture has a computational advantage: cost is linear in the number of states in the model, not quadratic
- Given any protein (sequence of amino acid letters) we can compute the corresponding most likely hidden state sequence:

G
 L
 S
 A
 A
 ...

$$i_1$$
 i_2
 m_3
 m_4
 i_5
 ...

 V
 K
 G
 H
 G
 ...

 m_4
 m_5
 i_8
 i_9
 m_{10}
 ...

 Multiple sequences can be aligned based on the associated match states

Model based multiple alignment: example

- A single HMM trained for the globin family
- Resulting alignments to the model (match states)

-VKGHGKKVADALTNAVAHVDD....MPNALSALSDLHA...HKLRVDPV.NFKLLSHCLLVTLAAHLP KVKAHGKKVLGAFSDGLAHLDN....LKGTFATLSELHC...DKLHVDPE.NFRLLGNVLVCVLAHHFG DLKKHGVTVLTALGAILKKKGH....HEAELKPLAQSHA...TK-HKIPIkYLEFISEAIIHVLHSRHP PFETHANRIVGFFSKIIGELPN....IEADVNTFVASHK...PR-GVTHD.QLNNFRAGFVSYMKAH--DVRWHAERIINAVNDAVASMDDtek.MSMKLRDLSGKHA...KSFQVDPQ.YFKVLAAVIADTVAA---ELQAHAGKVFKLVYEAAIQLQVtgvvvTDATLKNLGSVHV...SK-GVADA.HFPVVKEAILKTIKEVVG GVAALGAKVLAQIGVAVSHLGDegk.MVAQMKAVGVRHKgygNK-HIKAQ.YFEPLGASLLSAMEHRIG

uppercase letters = match states

lowercase letter = insert states

- '-' = delete states
- '.' = fill character (for pretty alignment only)