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Topics

• Representations of model structure

– properties of representations

– state diagrams vs. graph models

– Bayesian networks



What is a good representation?

• Properties of good representations

1. Explicit

2. Compact

3. Modular

4. Permits efficient computation

5. etc.



Representing the model structure

• Two possible representations of Markov models:

1. in terms of state diagrams (nodes in the graph correspond to

the possible values of the states)
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2. in terms of variables (nodes in the graph are variables):
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• The representations differ in terms of what aspects of the model

are made explicit



Model structure cont’d

• Case 1: sparse transition structure

1. State transition diagram is explicit
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2. Representation in terms of variables leaves this implicit

s0
© →

s1
© →

s2
© →



Model structure cont’d

• Case 2: successive states are independent of each other

1. State transition diagram is fully connected
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2. Representation in terms of variables is explicit
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Model structure cont’d

• Case 3: time series signals such as music may involve multiple

relatively independent underlying processes operating at different

time scales

1. State transition diagram (argh #$& ...)

2. In terms of variables (graph model)
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Graphical models

• Graph representions of probability models in terms of variables

are known as graphical models

A mixture model as

a graphical model

i

x

"parent of x"

"child of i"

"i influences x"
"i causes x"
"x depends on i"

• Different types of graph models differ in terms of how we repre-

sent dependencies and independencies among the variables

1. Bayesian networks (natural for “causal” relations)

2. Markov random fields (natural for physical or symmetric rela-

tions)

3. etc.



Bayesian networks: examples

A Markov chain:

A hidden Markov model:



Qualitative inference

• The graph provides a qualitative description of the domain

coin 2coin 1

same or different

x1 = first coin toss

x2 = second coin toss

x3 = same?
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Qualitative inference cont’d

• Just by looking at the graph, we can determine what we can and

cannot ignore (why important?)

Marginal independence of “Earthquake” and “Burglary”

Radio report

Earthquake Burglary

Alarm



Qualitative inference cont’d

• Induced dependence:

Radio report

Earthquake Burglary

Alarm

• Explaining away:

Radio report

Earthquake Burglary

Alarm



Two levels of description

• Graphical models need two levels of specification

1. Qualitative properties captured by a graph

coin 2coin 1

same or different

x1 = first coin toss

x2 = second coin toss

x3 = same?

2. Quantitative properties specified by the associated probability

distribution

P (x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2)

where, e.g.,

P (x1 = heads) = 0.5

P (x3 = same|x1 = heads, x2 = tails) = 0



More examples
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Mixture model hierarchical mixture model

• i and j correspond to the discrete choices in the mixture model

• x is the (vector) variable whose density we wish to model

• We cannot tell what the component distributions P (x|i) are based

on the graph alone



More examples cont’d
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Mixture of experts hierarchical mixture of experts

• In this case the choices of i and j and the output y depend on

the input x

(The shaded variables denote observed values; we do not need

to model the density over x)



More examples cont’d
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Factorial HMM input-output HMM

• In factorial HMMs, independent processes conspire to generate

the observed output sequence

• In input-output HMMs, any observed sequence of outputs y is

accompanied by a corresponding sequence of inputs x

– the model tranforms any input sequence into an output se-

quence (markov?)



Graph model specification

coin 2coin 1

same or different

x1 = first coin toss

x2 = second coin toss

x3 = same?

• We need to address the following questions

1. What is the graph semantics?

2. What type of probability distribution can be associated with

any specific graph?

3. How can we exploit the graph in making quantitative infer-

ences?



Graph semantics

• The graph captures independence properties among the variables

• The independences can be read from the graph based on some

notion of graph separation

Course
material

Lecturer
Test
scores

Grade of
student A

Grade of
student B

Course

conditional independence



Graph semantics cont’d

• We have already seen the interesting cases...

Alarm

Earthquake Burglary

Alarm

Earthquake Burglary

marginal independence induced dependence

• Note that the formal “graph separation” measure here must pay

attention to the direction of the edges



Graph separation criterion (briefly)

• D-separation criterion (D for Directed edges):

Definition: variables x and y are D-separated (conditionally inde-

pendent) given z if they are separated in the moralized ancestral

graph

• Example:
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original graph ancestral moral ancestral


