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Lecture 2: linear/additive regression



Topics

e Linear regression, additive models
— Loss functions, fitting, generalization
— Statistical view, bias and variance



Regression

e We need to define a function class and fitting criterion (loss)

e Example: linear functions of one variable (two parameters)

flx;w) = wg + wix
with a squared loss: Loss(y, f(z;w)) = (y — f(z; w))?/2.
Estimation based on minimizing the empirical 10ss
n
Jn(w) = > Loss(y;, f(x;; w))
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Linear regression: estimation

e \We minimize the empirical squared loss

Jn(w) =Y Loss(y;, f(zi;w)) = Y (y; — wg — wyz;)?/2
i=1 i=1

Setting the derivatives with respect to wg and wy to zero we get
necessary conditions for the “optimal’ parameter values

0

mn
J — L _ )= 0
D n(W) Z;l (y; — wo — wiw;)
8 mn
5—‘]’”(“’) = — ) (yi—wo—wiz;) z; =0
w1 i=1

Note: These conditions mean that the prediction error (y; —wg —
wqix;) has zero mean and is decorrelated with the inputs z;



Linear regression: estimation

e The prediction error (y;—wg—wiyx;) is decorrelated with the inputs
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Linear regression: estimation

8 mn
J — L _ )=0
Swr n(wW) Z; (y; — wg — wix;)
8 n
5—‘]’”(“’) = — ) (yi—wo—wiz;) z; =0
w1 i=1

e Solution via matrix inversion

wo (T0eg 1)+ wi (T )
Sy m) 4wy (S0 22)

or ®w = b, where

o If ® is invertible, we get our parameter estimates via w = b1

Z?’: 1Y
D i1 YiT;

wo



Linear regression: pseudo-inverse

e 2-D example:

v, = f(x4; W) = wo + wizi1 + woxo
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e \We find the solution in the subspace spanned by the examples
(weight vector set to zero in the “unused” dimensions)



Linear regression

e In a matrix notation, we minimize:

v ] [ 1 2] ’
L 1 T I [wO]
w
2 | Yn | 1 x| 1
1
or =y — Xw]|?
~lly = Xw]|

By setting the derivatives to zero, we get

X'y - XTXw=0 = w=XX)"xTy
T T

Note: the solution is a linear function of the outputs y



Linear regression: generalization

e Generalization performance as a function of the number of train-
ing examples {('rla y1)7 L) (:C"nn yn)}
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e [ his makes no sense unless we assume that there is a systematic
relation between z and y: each training example (x,y) is an in-
dependent sample from a fixed but unknown distribution P(z,vy).



Linear regression: generalization

Training examples {(x1,y1),---, (@n,yn)}
Test examples {(@p+1,Yn+1)s- s (Tt N> Yn+-N) }

Let w,, be the least squares parameter estimates on the basis of
the training examples.

1 n
Mean training error = — Z (y; — Wo — W12;)?
n .
=1
1
Mean test error = — Z (y; — Wo — W1x;)?
z—n—l—l
¥ . . 1 _ ~ —~ 2
Generalization” error = E. .y.p {(y — W — W1x) }

(note: wg and wy are themselves random variables as they are
computed on the basis of the randomly sampled training exam-

ples)



Linear regression: generalization

e \We can decompose the *“generalization” error

Bz y)~P {(y — WQ — VAV1=’13)2}
into two terms:
1. error of the best predictor in the class

Eay)~p 1y — w5 —wiz)?]

2. how well we approximate the best predictor

E(m,y)NP {(Wé + VV>I1<33 — Wg — V'le)Q}



Linear regression and extensions

e Linear in the parameters w, not necessarily in the inputs x
1. Simple linear prediction f: R — R

flx; w) = wg + wix
2. mth order polynomial prediction f: R — R
flz;w) =wog+wiz+ ... +wy 12™ 1 + wmz™
3. Multi-dimensional linear prediction f : RY - R

f(x;w) =wg +wizy + ... +wg_1T9-1 + wyzqg

where x = [z1...24_1 z4]!, d = dim(x)



Additive models

4. Prediction via linear combination of basis functions (features)
{p1(x),...,dm(x)}, where each ¢;(x) : R® - R, and

f(x;w) =wg+wip1(x) + ... + wip—10m—_1(X) + wmPm(x)

e For example:
If p;(x) =x*, i=1,...,m, then

f(x;w) =wg+wiz+ ...+ wm_lxm_l + wmx™

If m =d, ¢i(X)=£BZ‘, 1=1,...,d, then

f(x;w) =wg+wiz1 + ... +wg_124-1 + wgzy



Additive models

e Graphical representation of additive models

T f(x; w)
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e \What if the basis functions themselves can be adjusted?



Additive models

e Example: we have m prototypes of examples uq,..., um

The basis functions can be used to (softly) select the closest
prototype to each example x

1
or(x) = exp{ —Slx — ull}

e Example: the “basis functions” may also be constructed by com-
puting various relevant features from the examples

1, if interest rate is up
0, otherwise

Prp(x) = {



Statistical view of linear regression

e A statistical regression model

function 4+ noise
f(x;w) + €

Observed output
Yy

where, e.g., e ~ N(0,c2).

e \Whatever we cannot capture with our chosen family of functions
will be interpreted as noise



Statistical view of linear regression

e Our function f(x;w) here is trying to capture the mean of the
observations y given a specific input x:

E{y|x} = f(x;w)




Statistical view of linear regression

e According to our statistical model

y=f(x;w)+e e~ N(0,0°)

the outputs y given x are normally distributed with mean f(x;w)
and variance o2:

P(ulx, w,0%) = s exp{ — (s ~ F(xiw))?}

e AsS a result we can also measure the uncertainty in the predictions,
not just the mean

e Loss function? Estimation?



Maximum likelihood estimation

e Given observations D = {(x1,v1),---, (Xn,yn)} we find the param-
eters w that maximize the likelihood of the observed outputs

n
L(D;w,0%) = [[ P(yilxi,w,0?)
1=1

-2 -1 0 1 2

Why is this a bad fit according to the likelihood criterion?



Maximum likelihood estimation

Likelihood of the observed outputs:

n
L(D;w,0°) = [[ Pyilxi,w,0°)
i=1
e It is often easier (but equivalent) to try to maximize the log-
likelihood:

n
Z(D;W,Uz) = log L(D;W,O‘Q) p— Z log P(yi‘Xi,W,OQ)
)
mn 1 ’
= Y (—=5(y; — f(xi;w))? — log \/ 2mo?
=1\ 207

= () z:jl (s — F(xi W)+ ...

e | his should look familiar...



Maximum likelihood estimation cont’d

e [ he noise distribution and the loss-function are intricately related

Loss(y, f(x;w)) = —log P(y\x,w,az) + const.



Maximum likelihood estimation cont’d

e General fitting criterion: likelihood of the observed outputs

n
L(D;w,0%) = ] P(yilx;, w,0°)
1=1

e \We can just as easily fit the noise variance o2 by maximizing the
log-likelihood I(D; w,c?) with respect to o2

What might the answer be?



Maximum likelihood estimation cont’d

e General fitting criterion: likelihood of the observed outputs
n
L(D;w,0°) = [[ Pyilxi,w,0°)
i=1

e \We can just as easily fit the noise variance o2 by maximizing the
log-likelihood I(D; w,c?) with respect to o2

Let w be the maximum likelihood parameters for the linear model

f(x;w), we can compute o2 as
> _ 1 >
== (yi— f(x;;W))
1=1

i.e., it is the mean squared prediction error of the best linear
predictor.



Bias and variance

e Assume that the outputs were actually generated from a linear
model with parameters w*, i.e.,

*
y = :wé‘) —ijuf{:g—l-e
where € ~ N(0, 02).
e Based on n training examples, we find a weight vector
w=(XI'X)"1XTy = (XITX) " 1XT(y* 4+ ¢) = w* + (XITX)"1XT¢

e We can (in principle) characterize how the estimate depends on
the noise by computing its bias and variance

Bias: w*— FE{w} =0

where the expectation is over the noise terms €. The linear model
IS unbiased

Variance: E{ (W — E{Ww}) (W — E{vAv})T} =...=c(XIxX)1

The covariance depends on both the location of the input exam-
ples and the noise variance 2.



