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Lecture 2: linear/additive regression



Topics

• Linear regression, additive models

– Loss functions, fitting, generalization

– Statistical view, bias and variance



Regression

• We need to define a function class and fitting criterion (loss)

• Example: linear functions of one variable (two parameters)

f(x; w) = w0 + w1x

with a squared loss: Loss(y, f(x; w)) = (y − f(x; w))2/2.

Estimation based on minimizing the empirical loss

Jn(w) =
n∑
i=1

Loss(yi, f(xi; w))
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Linear regression: estimation

• We minimize the empirical squared loss

Jn(w) =
n∑
i=1

Loss(yi, f(xi; w)) =
n∑
i=1

(yi − w0 − w1xi)
2/2

Setting the derivatives with respect to w0 and w1 to zero we get

necessary conditions for the “optimal” parameter values

∂

∂w0
Jn(w) = −

n∑
i=1

(yi − w0 − w1xi) = 0

∂

∂w1
Jn(w) = −

n∑
i=1

(yi − w0 − w1xi) xi = 0

Note: These conditions mean that the prediction error (yi−w0−
w1xi) has zero mean and is decorrelated with the inputs xi



Linear regression: estimation

• The prediction error (yi−w0−w1xi) is decorrelated with the inputs

xi
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Linear regression: estimation

∂

∂w0
Jn(w) = −

n∑
i=1

(yi − w0 − w1xi) = 0

∂

∂w1
Jn(w) = −

n∑
i=1

(yi − w0 − w1xi) xi = 0

• Solution via matrix inversion

w0

(∑n
i=1 1

)
+ w1

(∑n
i=1 xi

)
=

∑n
i=1 yi

w0

(∑n
i=1 xi

)
+ w1

(∑n
i=1 x

2
i

)
=

∑n
i=1 yixi

or Φw = b, where

Φ =

[ ∑n
i=1 1

∑n
i=1 xi∑n

i=1 xi
∑n
i=1 x

2
i

]
, b =

[ ∑n
i=1 yi∑n
i=1 yixi

]

• If Φ is invertible, we get our parameter estimates via ŵ = Φ−1b



Linear regression: pseudo-inverse

• 2-D example:

yi ≈ f(xi; w) = w0 + w1xi1 + w2xi2
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• We find the solution in the subspace spanned by the examples

(weight vector set to zero in the “unused” dimensions)



Linear regression

• In a matrix notation, we minimize:

1

2

∥∥∥∥∥∥∥
 y1
· · ·
yn

−
 1 x1
· · · · · ·

1 xn

 [ w0
w1

]∥∥∥∥∥∥∥
2

or
1

2
‖y −Xw‖2

By setting the derivatives to zero, we get

XTy −XTXw = 0 ⇒ ŵ = (XTX)︸ ︷︷ ︸
Φ

−1
XTy︸ ︷︷ ︸
b

Note: the solution is a linear function of the outputs y



Linear regression: generalization

• Generalization performance as a function of the number of train-

ing examples {(x1, y1), . . . , (xn, yn)}
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• This makes no sense unless we assume that there is a systematic

relation between x and y: each training example (x, y) is an in-

dependent sample from a fixed but unknown distribution P (x, y).



Linear regression: generalization

Training examples {(x1, y1), . . . , (xn, yn)}
Test examples {(xn+1, yn+1), . . . , (xn+N , yn+N)}

Let ŵn be the least squares parameter estimates on the basis of

the training examples.

Mean training error =
1

n

n∑
i=1

(yi − ŵ0 − ŵ1xi)
2

Mean test error =
1

N

n+N∑
i=n+1

(yi − ŵ0 − ŵ1xi)
2

“Generalization” error = E(x,y)∼P
{

(y − ŵ0 − ŵ1x)2
}

(note: ŵ0 and ŵ1 are themselves random variables as they are

computed on the basis of the randomly sampled training exam-

ples)



Linear regression: generalization

• We can decompose the “generalization” error

E(x,y)∼P
{

(y − ŵ0 − ŵ1x)2
}

into two terms:

1. error of the best predictor in the class

E(x,y)∼P
{

(y −w∗0 −w∗1x)2
}

2. how well we approximate the best predictor

E(x,y)∼P
{

(w∗0 + w∗1x− ŵ0 − ŵ1x)2
}



Linear regression and extensions

• Linear in the parameters w, not necessarily in the inputs x

1. Simple linear prediction f : R→ R

f(x; w) = w0 + w1x

2. mth order polynomial prediction f : R→ R

f(x; w) = w0 + w1x+ . . .+ wm−1x
m−1 + wmx

m

3. Multi-dimensional linear prediction f : Rd → R

f(x; w) = w0 + w1x1 + . . .+ wd−1xd−1 + wdxd

where x = [x1 . . . xd−1 xd]
T , d = dim(x)



Additive models

4. Prediction via linear combination of basis functions (features)

{φ1(x), . . . , φm(x)}, where each φi(x) : Rd → R, and

f(x; w) = w0 + w1φ1(x) + . . .+ wm−1φm−1(x) + wmφm(x)

• For example:

If φi(x) = xi, i = 1, . . . ,m, then

f(x; w) = w0 + w1x+ . . .+ wm−1x
m−1 + wmx

m

If m = d, φi(x) = xi, i = 1, . . . , d, then

f(x; w) = w0 + w1x1 + . . .+ wd−1xd−1 + wdxd



Additive models

• Graphical representation of additive models

x1 x2

φ (   )mxφ (   )1 x

. . .

1

1w wm

0w f(x; w)

• What if the basis functions themselves can be adjusted?



Additive models

• Example: we have m prototypes of examples µ1, . . . , µm

The basis functions can be used to (softly) select the closest

prototype to each example x

φk(x) = exp{ −
1

2
‖x− µk‖2 }

• Example: the “basis functions” may also be constructed by com-

puting various relevant features from the examples

φk(x) =

{
1, if interest rate is up
0, otherwise



Statistical view of linear regression

• A statistical regression model

Observed output = function + noise

y = f(x; w) + ε

where, e.g., ε ∼ N(0, σ2).

• Whatever we cannot capture with our chosen family of functions

will be interpreted as noise



Statistical view of linear regression

• Our function f(x; w) here is trying to capture the mean of the

observations y given a specific input x:

E{ y |x } = f(x; w)
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Statistical view of linear regression

• According to our statistical model

y = f(x; w) + ε, ε ∼ N(0, σ2)

the outputs y given x are normally distributed with mean f(x; w)

and variance σ2:

P (y|x,w, σ2) =
1√

2πσ2
exp{−

1

2σ2
(y − f(x; w))2 }

• As a result we can also measure the uncertainty in the predictions,

not just the mean

• Loss function? Estimation?



Maximum likelihood estimation

• Given observations D = {(x1, y1), . . . , (xn, yn)} we find the param-

eters w that maximize the likelihood of the observed outputs

L(D; w, σ2) =
n∏
i=1

P (yi|xi,w, σ2)
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Why is this a bad fit according to the likelihood criterion?



Maximum likelihood estimation

Likelihood of the observed outputs:

L(D; w, σ2) =
n∏
i=1

P (yi|xi,w, σ2)

• It is often easier (but equivalent) to try to maximize the log-

likelihood:

l(D; w, σ2) = logL(D; w, σ2) =
n∑
i=1

logP (yi|xi,w, σ2)

=
n∑
i=1

(
−

1

2σ2
(yi − f(xi; w))2 − log

√
2πσ2

)

=
(
−

1

2σ2

) n∑
i=1

(yi − f(xi; w))2 + . . .

• This should look familiar...



Maximum likelihood estimation cont’d

• The noise distribution and the loss-function are intricately related

Loss(y, f(x; w)) = − logP (y|x,w, σ2) + const.



Maximum likelihood estimation cont’d

• General fitting criterion: likelihood of the observed outputs

L(D; w, σ2) =
n∏
i=1

P (yi|xi,w, σ2)

• We can just as easily fit the noise variance σ2 by maximizing the

log-likelihood l(D; w, σ2) with respect to σ2

What might the answer be?



Maximum likelihood estimation cont’d

• General fitting criterion: likelihood of the observed outputs

L(D; w, σ2) =
n∏
i=1

P (yi|xi,w, σ2)

• We can just as easily fit the noise variance σ2 by maximizing the

log-likelihood l(D; w, σ2) with respect to σ2

Let ŵ be the maximum likelihood parameters for the linear model

f(x; w), we can compute σ2 as

σ̂2 =
1

n

n∑
i=1

(yi − f(xi; ŵ))2

i.e., it is the mean squared prediction error of the best linear

predictor.



Bias and variance

• Assume that the outputs were actually generated from a linear
model with parameters w∗, i.e.,

y =

y∗︷ ︸︸ ︷
w∗0 + w∗1x+ε

where ε ∼ N(0, σ2).

• Based on n training examples, we find a weight vector

ŵ = (XTX)−1XTy = (XTX)−1XT (y∗+ ε) = w∗+ (XTX)−1XT ε

• We can (in principle) characterize how the estimate depends on
the noise by computing its bias and variance

Bias: w∗ − E{ ŵ } = 0

where the expectation is over the noise terms ε. The linear model
is unbiased

Variance: E
{

(ŵ − E{ ŵ }) (ŵ − E{ ŵ })T
}

= . . . = σ2(XTX)−1

The covariance depends on both the location of the input exam-
ples and the noise variance σ2.


