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Lecture 20: graph models



Topics

• Bayesian networks

– graph semantics

– associated probability distribution

• Medical diagnosis example

– model specification

– three inference problems



Graph model specification

coin 2coin 1

same or different

x1 = first coin toss

x2 = second coin toss

x3 = same?

• We need to address the following questions

1. What is the graph semantics?

2. What type of probability distribution can be associated with

any specific graph?

3. How can we exploit the graph in making quantitative infer-

ences?



Review: D-separation

• D-separation criterion (D for Directed edges):

Definition: variables x and y are D-separated (conditionally inde-

pendent) given z if they are separated in the moralized ancestral

graph

• Example:

x

yz

⇒

x

yz ⇒

x

yz
original graph ancestral moral ancestral



Towards quantitative specification

x

yz

• We can derive a number of conditional independence properties

among the variables

• Can we always find a probability distribution that is consistent

with all such independence properties?

Consistency here means

Separated in the graph⇒ independent in P (x, y, z, . . .)



Bayesian networks

• Factorization theorem:

Theorem: The most general form of the probability distribution

consistent with the graph factors according to “node given its

parents”:

P (x) =
d∏

i=1

P (xi|xpai)

where xpai is the set of parents of xi. d is the number of nodes

(variables) in the graph.

pax

x



Bayesian networks: example

• The most general form of the probability distribution consistent

with the graph coin 2coin 1

same or differentis given by

P (x1, x2, x3) = P (x1)P (x2)P (x3|x1, x2)

• Note that this includes, e.g.,

P (x1, x2, x3) = P (x1)P (x2)P (x3), or

P (x1, x2, x3) = P (x1)P (x2)P (x3|x1)



Medical diagnosis example

• Two marginally independent diseases d1 and d2 and one corre-

sponding finding f

d2d1

f

P (d1): 0.9
0.1

P (d2): 0.8
0.2

P (f |d1, d2): 0.5 0.6 0.2 0.9
0.5 0.4 0.8 0.1

(the size of the conditional probability table for P (f |d1, d2, d3, . . .)

would increase exponentially with the number of associated dis-

eases)



Medical diagnosis example cont’d

• The QMR-DT model (Shwe et al. 1991)

. . .

. . .

Diseases

Findings

d

f

• The model contains about 600 significant diseases

– the diseases can be either “present” d = 1 or “absent” d = 0

• There are about 4000 associated findings

– the outcome of the findings are either “positive” f = 1 or

“negative” f = 0 (e.g., results of laboratory tests or physician

observations)



Medical diagnosis example cont’d

• There are a number of simplifying assumptions in the model

. . .

. . .

Diseases

Findings

d

f

• Do we have all the relevant variables (e.g., significant diseases)?

• Assumptions that are explicit in the graph:

– marginal independence of diseases

– conditional independence of findings

• Assumptions about the underlying probability distribution:

– causal independence assumptions



Assumptions in detail

• Diseases are marginally independent

d2d1 d1 = Hodgkins disease
d2 = Plasma cell myeloma

• The findings are conditionally independent given the diseases

d2d1

f2f1

f1 = Bone X-ray fracture
f2 = ...



Assumptions cont’d

• We have to specify how n underlying diseases associated with a
particular finding conspire to generate the outcome

• Causal independence assumption (Noisy-OR):

The outcome is negative (f = 0) if all the diseases that are
present (d = 1) independently fail to induce a positive outcome

P (f = 0|dpa) = (1− q0)
∏
j∈pa

(1− qj)dj

P (f = 1|dpa) = 1− P (f = 0|dpa)

d1 d2

. . .

dn

f

– dpa is the set of diseases associated with finding f and qj is
the probability that disease j alone, if present, can generate a
positive outcome

– q0 is the probability that an unknown disease would cause a
positive finding



Joint distribution

• After all these assumptions, we can write down the following joint
distribution over n diseases and m findings

P (f, d) =

 m∏
i=1

P (fi|dpai)

  n∏
j=1

P (dj)


where P (fi = 0|dpai) = (1− qi0)

∏
j∈pai

(1− qij)dj

where dpai is the set of diseases associated with finding fi

• To fully specify the underlying probability distribution (given the
graph structure), we have to choose qij and the priori disease
probabilities P (dj)

. . .

. . .

Diseases

Findings

d

f



Three inference problems

• Given a set of observed findings f∗ = {f∗2, . . . , f
∗
k}, we wish to

infer what the underlying diseases are

. . .

. . .

Diseases

Findings

d

f

1. What is the most likely setting of all the underlying disease

variables?

d∗ = argmax
d

P (d|f∗) = argmax
d

P (f∗, d)

2. What are the marginal posterior probabilities

P (di = 1|f∗), i = 1, . . . , n

3. Which test should we carry out next in order to get the most

information about the diseases?



Inference problem cont’d

• For the purposes of inferring the presence or absence of the un-

derlying diseases, the following two cases are equivalent

d2d1

f

d2d1

unobserved finding no associated findings

• In other words, we can ignore any findings that remain unobserved

(as if they were not in the model to begin with)

. . .

. . .

Diseases

Findings

d

f

⇒
. . .

. . .

d

f

Findings

Diseases

*



Inference problem cont’d

• What if the findings were not conditionally independent given the

diseases?

d2d1

f1 f2

d3



First inference problem

• We can try to find the most likely disease configuration given f∗

via a search algorithm

A very simple (naive) algorithm:

1. Start with all diseases absent d∗1 = 0, . . . , d∗n = 0

2. Successively update each disease variable to increase the prob-

ability P (f∗, d∗) of diseases and the observed findings

d∗j ← argmax
dj

P (f∗, d∗1, . . . , d
∗
j−1, dj, d

∗
j+1, . . . , d

∗
n)

Are there any better algo-

rithms that we could use?

Dynamic programming?

. . .

. . .

d

f

Findings

Diseases

*



First inference problem cont’d

• The search may not be that easy...

Findings

Diseases

(this is a small portion of the real QMR-DT)



Second inference problem

• We wish to find the marginal posterior probabilities of the dis-

eases given the findings (i.e., the overall probability that individual

diseases are present given the findings)

P (di = 1|f∗) =
P (f∗, di = 1)

P (f∗)
=

∑
d diP (f∗, d)∑
dP (f∗, d)

• This involves summing over all configurations of diseases...

... there are 2600 such disease configurations

• Two possible ways around this:

1. Exploit the model structure (later)

2. Approximate inference (sampling)


