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Lecture 21: graph models cont’'d



Topics

e Medical diagnosis example cont'd
— three inference problems

e Markov random fields
— motivation, model semantics
— associated distribution
— pattern completion example



Review: three inference problems

e Given a set of observed findings f* = {f5,...,f;}, we wish to
infer what the underlying diseases are
Diseases

Findings

1. What is the most likely setting of all the underlying disease
variables?

d* = arg mc?x P(d|f*) = arg mc?x P(f*,d)
2. What are the marginal posterior probabilities
P(d;=1|f"), i=1,...,n

3. Which test should we carry out next in order to get the most
information about the diseases?



Second inference problem

e \We wish to find the marginal posterior probabilities of the dis-
eases given the findings (i.e., the overall probability that individual
diseases are present given the findings)

P(f*) >a P(f*,d)

e [ his involves summing over all configurations of diseases...

P(d; = 1|f*) =

. there are 2990 such disease configurations

e [ WO possible ways around this:

1. Exploit the model structure (later)
2. Approximate inference (sampling)



Second inference problem cont’d

e \What if we just sampled disease configurations from the posterior
distribution P(d|f*) and computed the fraction of times disease
d; were present?

1 L
P(di=1|f*)%fz d;
=1

where each d* = {d},...,d.} is an independent sample configura-
tion from the posterior P(d|f*)

But we cannot easily sample from P(d|f*)...



Importance sampling

e \We can approximate the summations over exponentially many
disease configurations via importance sampling

Example:

N =S P g — P(*,d)
PUN =L PUND) = YA =40

B P(f*, d)
- Ed“’@{ Q(d) }
l T P(f*,dt)

T~ Qd)

where the disease configurations d! are drawn from the simple
proposal distribution Q(d) (which one?)

Q




Second inference problem cont’d

e \We can evaluate the relevant probabilities approximately by draw-
ing samples from the simple proposal distribution Q(d):

PUD = L PUND =53~
P(f",d;i=1) = zd:dip(f ’d)zft; d; O(d)

e [ he desired posterior marginals are obtained as ratios of these
sampled estimates:
1 T gt P(f*.d)
P(f*d;=1) T 2i=1 % G

% ~ x gt
PUD b sl

P(d; = 1|f) =

(likelihood weighted sampling)



Second inference problem cont’d

e [ his actually works...
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marginals (simple cases)



Third inference problem

e \We would like to find out which tests to carry out next in order

to get the most information about the underlying diseases
Diseases

Findings

e For this we need to know how uncertain the outcomes of other
findings are given the observed ones f*

P(filf*) =) P(fildpa;) P(d|f")
d

as well as the (hypothetical) effect of observing f; = 0,1 on the
diseases

P(d7 f7,7f*)

Pd|fi, 7) =



Third inference problem cont’d

e \We select the test that has the best chance of reducing the
uncertainty about the underlying diseases

e [ his is the test that has the highest mutual information with the
diseases

P(d[f*)

\ 4

comparison of disease uncer-
tainties before and after ob-
serving f; = 0,1

I(fi;d) = > P(f|lf") |D>_PUlfi, f*)log
d

fi=0,1

(individual terms here could be approximated as before)

e Other criteria?



Topics

e Markov random fields
— motivation, model semantics
— associated distribution
— pattern completion example



Limitations of Bayesian networks

e [ he graph should explicitly capture the independence properties
among the variables

For example: how can we draw the arrows in a Bayesian network
disease 1
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disease 4

such that

diseases 2 and 3 are cond. indep. given 1 and 4
diseases 1 and 4 are cond. indep. given 2 and 3



Limitations of Bayesian networks cont’d

e How can we model symmetric interactions between two variables
(e.g., diseases) with a Bayesian network?

unknown common cause

disease 1 disease 2 disease 1 disease 2

e Such symmetric interactions are better modeled with undirected
graph models (Markov random fields)



Markov random fields

e Markov random fields are complementary graph models that try
to capture symmetric dependencies

e Example: a spin lattice with nearest neighbor dependencies
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e As before, we have to
— define graph semantics
— associated probability distribution



Graph semantics

e The (conditional) independence properties can read from the
graph via simple graph separation:

x and y are conditionally independent given z if all paths between
x and y go through z

<O @O

x and y are conditionally independent given z

e T his graph semantics captures our previous example

P

e \We still need to determine what type of distributions are consis-
tent with the graph...



Markov random fields

e Simple independent example:

O O

5D1(V3312 302@22

P(x1) P(x2)
1 2 3

e A Markov chain <> <> Q

P(x1,z0,23) =

Y12(x1,22) YPo3(x2,23)

P(xz1,z2)  P(x3|z2)
P(z1|zp)  P(x2,23)



Preliminaries: cliques

e A clique is any maximal fully connected subset of nodes in the
graph

(cliques are circled in the figure)



Markov random fields

e Hammersley-Clifford factorization theorem:

Theorem: Any distribution consistent with the undirected graph
must factor according to the cliques in the graph

P(x) = % H Ye(Xe)

cecliques

where Z is a global normalization constant and x. is the set of
variables (nodes) associated with clique c.

e The non-negative factors y.(x.) that depend only on variables
within each clique are known as potential functions
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Image reconstruction example

e Modeling images with Boltzmann machines

- nearby pixels in images should be correlated

- we can capture such nearest neighbor dependences with the fol-
lowing lattice model
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