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Topics

• Medical diagnosis example cont’d

– three inference problems

• Markov random fields

– motivation, model semantics

– associated distribution

– pattern completion example



Review: three inference problems

• Given a set of observed findings f∗ = {f∗2, . . . , f
∗
k}, we wish to

infer what the underlying diseases are

. . .

. . .

Diseases

Findings

d

f

1. What is the most likely setting of all the underlying disease

variables?

d∗ = argmax
d

P (d|f∗) = argmax
d

P (f∗, d)

2. What are the marginal posterior probabilities

P (di = 1|f∗), i = 1, . . . , n

3. Which test should we carry out next in order to get the most

information about the diseases?



Second inference problem

• We wish to find the marginal posterior probabilities of the dis-

eases given the findings (i.e., the overall probability that individual

diseases are present given the findings)

P (di = 1|f∗) =
P (f∗, di = 1)

P (f∗)
=

∑
d diP (f∗, d)∑
dP (f∗, d)

• This involves summing over all configurations of diseases...

... there are 2600 such disease configurations

• Two possible ways around this:

1. Exploit the model structure (later)

2. Approximate inference (sampling)



Second inference problem cont’d

• What if we just sampled disease configurations from the posterior

distribution P (d|f∗) and computed the fraction of times disease

di were present?

P (di = 1|f∗) ≈
1

T

T∑
t=1

dti

where each dt = {dt1, . . . , d
t
n} is an independent sample configura-

tion from the posterior P (d|f∗)

But we cannot easily sample from P (d|f∗)...



Importance sampling

• We can approximate the summations over exponentially many

disease configurations via importance sampling

Example:

P (f∗) =
∑
d

P (f∗, d) =
∑
d

Q(d)
P (f∗, d)

Q(d)

= Ed∼Q

{
P (f∗, d)

Q(d)

}

≈
1

T

T∑
t=1

P (f∗, dt)

Q(dt)

where the disease configurations dt are drawn from the simple

proposal distribution Q(d) (which one?)



Second inference problem cont’d

• We can evaluate the relevant probabilities approximately by draw-

ing samples from the simple proposal distribution Q(d):

P (f∗) =
∑
d

P (f∗, d) ≈
1

T

T∑
t=1

P (f∗, dt)

Q(dt)

P (f∗, di = 1) =
∑
d

diP (f∗, d) ≈
1

T

T∑
t=1

dti
P (f∗, dt)

Q(dt)

• The desired posterior marginals are obtained as ratios of these

sampled estimates:

P (di = 1|f∗) =
P (f∗, di = 1)

P (f∗)
≈

1
T

∑T
t=1 d

t
i
P (f∗,dt)
Q(dt)

1
T

∑T
t=1

P (f∗,dt)
Q(dt)

(likelihood weighted sampling)



Second inference problem cont’d

• This actually works...
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Third inference problem

• We would like to find out which tests to carry out next in order

to get the most information about the underlying diseases

. . .

. . .

Diseases

Findings

d

f

• For this we need to know how uncertain the outcomes of other

findings are given the observed ones f∗

P (fi|f∗) =
∑
d

P (fi|dpai)P (d|f∗)

as well as the (hypothetical) effect of observing fi = 0,1 on the

diseases

P (d|fi, f∗) =
P (d, fi, f

∗)

P (fi, f∗)



Third inference problem cont’d

• We select the test that has the best chance of reducing the

uncertainty about the underlying diseases

• This is the test that has the highest mutual information with the

diseases

I(fi; d) =
∑

fi=0,1

P (fi|f∗)

∑
d

P (d|fi, f∗) log
P (d|fi, f∗)
P (d|f∗)


︸ ︷︷ ︸
comparison of disease uncer-

tainties before and after ob-

serving fi = 0,1

(individual terms here could be approximated as before)

• Other criteria?



Topics

• Markov random fields

– motivation, model semantics

– associated distribution

– pattern completion example



Limitations of Bayesian networks

• The graph should explicitly capture the independence properties

among the variables

For example: how can we draw the arrows in a Bayesian network

? ?

??

? ?

??

disease 4

disease 3disease 2

disease 1

such that

diseases 2 and 3 are cond. indep. given 1 and 4

diseases 1 and 4 are cond. indep. given 2 and 3



Limitations of Bayesian networks cont’d

• How can we model symmetric interactions between two variables

(e.g., diseases) with a Bayesian network?

unknown common cause

disease 1 disease 2

?

disease 1 disease 2

• Such symmetric interactions are better modeled with undirected

graph models (Markov random fields)



Markov random fields

• Markov random fields are complementary graph models that try

to capture symmetric dependencies

• Example: a spin lattice with nearest neighbor dependencies

. . .

. . .

. . .

. . .

• As before, we have to

– define graph semantics

– associated probability distribution



Graph semantics

• The (conditional) independence properties can read from the

graph via simple graph separation:

x and y are conditionally independent given z if all paths between

x and y go through z

x y
z

x and y are conditionally independent given z

• This graph semantics captures our previous example

• We still need to determine what type of distributions are consis-

tent with the graph...



Markov random fields

• Simple independent example:
1 2

P (x1, x2) =
1

Z︸︷︷︸ ψ1(x1)︸ ︷︷ ︸ ψ2(x2)︸ ︷︷ ︸
1 P (x1) P (x2)

• A Markov chain

1 2 3

P (x1, x2, x3) =
1

Z︸︷︷︸ ψ12(x1, x2)︸ ︷︷ ︸ ψ23(x2, x3)︸ ︷︷ ︸
1 P (x1, x2) P (x3|x2)
1 P (x1|x2) P (x2, x3)



Preliminaries: cliques

• A clique is any maximal fully connected subset of nodes in the

graph

(cliques are circled in the figure)



Markov random fields

• Hammersley-Clifford factorization theorem:

Theorem: Any distribution consistent with the undirected graph

must factor according to the cliques in the graph

P (x) =
1

Z

∏
c∈cliques

ψc(xc)

where Z is a global normalization constant and xc is the set of

variables (nodes) associated with clique c.

• The non-negative factors ψc(xc) that depend only on variables

within each clique are known as potential functions



Image reconstruction example

• Modeling images with Boltzmann machines

- nearby pixels in images should be correlated

- we can capture such nearest neighbor dependences with the fol-

lowing lattice model
x1 x2

. . . . . .

. . .

. . .


