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Lecture 22: markov random fields



Topics

e Markov random fields
— review: semantics, quantification
— pattern completion example



Review: Markov random fields

e The (conditional) independence properties can read from the
graph via simple graph separation:

x and y are conditionally independent given z if all paths between

x and y go through z
<@y

x and y are conditionally independent given z

e T his graph semantics captures the simple example
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Review: Markov random fields

e A Markov chain:
1 2 3
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P(x1,22,23) = Y1o(x1,x2) YPo3(x2,23)

P(xz1,z2)  P(x3|xo)
P(xz1lz)  P(x2,23)
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e More generally:

1
P(x) = E P123(x1, 20, 23) Y234(x0, 23, 24) Y35(23, 75)



Image reconstruction example

e Modeling images with Boltzmann machines

- nearby pixels in images should be correlated

- we can capture such nearest neighbor dependences with the fol-
lowing lattice model
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Example cont’d

e Each variable x; in the model indicates whether a pixel is on

(z; = 1) or off (x; = 0)
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e For any pair of pixels linked with an edge in the graph we have
the following potential function

Vij(@i, x;) = exp( Jijziz; + hijz; +hjz;)
where J;; defines the connection strength between pixels ¢ and j
(large values of Ji; imply highly correlated pixels)

h; permit us to bias individual pixel values towards on or off



Example cont’d

e
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e [ he full joint distribution over the pixels in the image is given by

1
P(x1,...,764]J,h) = 20 Il exp(Jijziz;+ hijzi +hjxz;)
’ edgesij

1
Z(J. h)

exp Z Jij Xj X j -+ Zﬁz x;
edgesij U

(here, e.qg., Bi = 4h,; for pixels away from the borders)
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e [ he graph structure implies a number Markov properties such as

P(zi|xo,...,z64,J,h) = P(x1|z2, 29, J, h)

e [ he specific potential functions we have used also turn these
conditional probabilities into logistic regression models (verify)

P(z1 = 1l|zp,z9, J, h) = g(J1222 + J1979 + h1)
where g(z) = (1 + e ?)~1 is the logistic function.



The reconstruction problem
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e Part of the image may be corrupted or missing (pixel values are
unknown)

e \We can use the probability model to infer what the missing pixels
are (complete the image)

Inference problem: evaluate the marginal posterior probabilities
for the missing pixels

Learning problem: adjust the connection strengths for better
reconstruction



Second inference problem
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e Assuming half the image is missing, we have 232 possible config-
urations of the missing pixels

e \We could apply the sampling method we already know about
(importance sampling 4+ likelihood weighting) to evaluate the
posterior probabilies as in the context of medical diagnosis

e For Boltzmann machines there's a more natural sampling ap-
proach: Gibbs' sampling



Gibbs’ sampling

e Given a set of known pixel values
z* = {x}}, we wish to evaluate the *
posterior probabilities P(x;|x*, J, h)
for all the missing pixels % &‘

e \We can do this via Gibbs’ sampling:
1. Initialize all the missing pixels (e.g., set x; = 0)
2. Sequentially sample a new value for each missing pixel x; based
on the current setting of its neighbors (nb)

x; ~ P(xi|zpp,, J, h)

In our case, these conditional probabilities are logistic regres-
sion models

P(x; = 1|wnbiat]7 h) =g ( Z ] ] )

jenb;



Gibbs’ sampling cont’d

e Gibbs’ sampling method generates a sequence of new pixel values

1 2 t t+1
a:i,:cz-,...,xi,a:i g oo

where z! is the sampled value for pixel i at the " iteration of the
sampler (we assume that one iteration means generating a new
value for each missing pixel)

e The posterior mean (expected value) of pixel ¢ can be evaluated
approximately from these samples

1 T
E{a:*i|:r;*,J,h}%f Z a:f:’
t=1



Learning problem

e How do we set the connection strengths J;; in the Boltzmann
machine to improve reconstruction?

e Given a training set of images D = {x3,...,Xn} We can set J;; via
maximum likelihood estimation

The connection strengths can be updated via stochastic gradient
ascent

o0
Jz] — JZ] + € log P(Xt|J, h)
8Jij
so long as we can evaluate the gradients for any particular training

image x; (vector of known pixel values)



Learning problem cont’d

0 d
5 PO PCall )y = o 3 Jigelal 430 Riwl —10g Z(J;h)
& 7 |edgesij

log Z(J, h)

I
8

1]
= alal — E{xz;|J,h}

where E{x;xz;|J,h} is the expected co-occurence of the pixel
values based on our current model (setting of J and h).

e We can evaluate E{x;x;|J,h} via Gibbs' sampling



