6.867 Machine learning and neural networks

Tommi Jaakkola
MIT AI Lab

tommi®@ai.mit.edu

Lecture 24: exact inference cont'd, model selection



Topics

e Exact inference: review

e Model selection
— basic ideas
— minimum description length principle



Review: inference with junction trees

e By grouping nodes in the original graph
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into larger clusters (cliques), we obtain a junction tree represen-
tation of the associated probability model
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e [ he inference calculations in the junction tree reduce to making
sure that the potentials are consistent

e Consistency is enforced through the two-stage (collect — dis-
tribute) propagation algorithm



Review: consistent junction tree
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e After both propagation operations, the relevant information is
consistent and stored locally

Y01(s0,81) o P(sq,s1]|evidence)
Y1(s1) o« P(sq1|evidence)
¢12(81,82) X P(31,32|evidence)



Example: hidden Markov model

e First we transform the HMM into an undirected graph model
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e [ hen we identify the cliques and construct the hyper-graph by
connecting cliques that have variables in common
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Example cont’d

e T he hyper-graph can be transformed into a tree structure by
dropping edges so long as any non-adjacent cliques that have
variables in common still have these variables in the path between
them
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e Finally, we can construct the junction tree for HMMs
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Initialization

e How do we initialize the junction tree if we cannot start from a
nice consistent solution?

S0 S1 s~ S1 Sz s, S2 !
'S 'Sy, 'S,
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e \We can initialize all the separators to unity and assign each con-

ditional probability to a single clique that fully contains the asso-
Ciated variables. E.qg.,

Y01(50,51) P(s0)P(s1ls0)
P1(s1) = 1
Y02(80, Z0) P(zols0)
and then apply the collect and distribute operations to achieve
the “consistent solution”



Topics

e Model selection
— basic ideas
— minimum description length principle



Model selection

e \We are looking for a general principle that allows us to select the
best model from limited observations

“Explanation should be as simple as possible, but no simpler”

e What makes one explanation better than another?
— generality?
— fewer assumptions?
— how it is articulated?

e \We need to find quantiable measures for automated comparison



Model selection: balance

e \We need a criterion that appropriately balances some measure of
model complexity (simplicity) with the empirical fit
— complexity has to be measured on the same scale as the em-
pirical fit
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What is “noise” 7



Minimum description length

e Minimum description length (MDL) principle:

We find a model that attains the minimum total encoding length:
the length of the code needed to describe the observed data given
the model and the length of the code needed to describe the

model itself.
empiriAcaI fit compAIexity
Total DL = (DL of data given the model) 4+ (DL of model)

e A long description length (DL) may come from

a) poor explanation (likelihood) of the observed data
b) choosing too complex model (too many choices a priori)



Digression: encoding length

e Suppose we have a sequence of n random numbers y1,vyo, ... €ach
drawn with probability P(y)

11211113141111121...
e We need —log, P(y) bits to encode each number y
Higer probability = smaller number of bits

e On average, it would take

|
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% zn: —logs P(yt) > —N(y)loga P(y)
t=1 4

— Y —P(y)logy P(y)
Yy

= H(y)

bits to encode a single number. Here H(y) is the Shannon entropy
(uncertainty) of the random numbers.



Minimum description length cont’d

Suppose we observe n i.i.d. training examples D = {x1,...,Xn}

Description length of the observed data given a specific setting

of the model parameters 6:

n
—log P(D|0) = — ) log P(x¢|0)
t=1
Description length of the model parameters

—log P(0)

where P(0) is a prior distribution over the parameters.

Are these sufficient? How do we set the parameter 67



Minimum description length cont’d

e \We have to also decide the precision at which to encode the pa-
rameters 8 (why would be spare any bits for useless parameters?)

e \We have to add a precision cost to the model description length
—log P(0) — log(é)
where the parameters 6 are now described upto precision §.

High precision (small §) = large precision cost

e [ he total description length is found by adding all the terms and
optimizing the sum with respect to # and the precision §

n
Total DL = min { — Y log P(x¢|0) — log P(8) — log(4) }
9,6 =

(note that the possible choices of 0 depend on the precision J)



Minimum description length cont’d

Asymptotically (when the number of observations n is large) the
description length reduces to

n
~ d
Total DL~ — > log P(x¢|0) + 5 log(n)
t=1

where d is the number of parameters in the model and 8 is the
maximum likelihood parameter estimate.

T his still has the right flavor...



Minimum description length: example

e \We have two binary variables x1 and xzo and two competing mod-
els

Model 0 Model 1

O O OO0

Model 0: two parameters needed for P(x1)P(xo)
Model 1: three parameters needed for P(x1,x5)

e Observed data:

L1 L2
1 O
O 1
1 1

(here x1 = 1 and x» = 1 with probability 0.5 and otherwise x1
and x» are selected uniformly at random)



Minimum description length: example

e T he difference between the description lengths of the two models

as a function of the number of data points:
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The figure is averaged over several random generation of the
training set



Review

e Main topics:

— regression, classification
* linear/additive, Boosting, SVMs

— generalization, regularization, feature selection

— complexity, model selection

— active learning, clustering

— density models: mixture models, mixtures of experts
x the EM-algorithm

— dynamic models: Markov models, hidden Markov models
+ forward-backward, viterbi

— graphical models: representation, inference



