6.867 Machine learning and neural networks

Tommi Jaakkola MIT AI Lab

tommi@ai.mit.edu

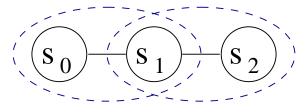
Lecture 24: exact inference cont'd, model selection

Topics

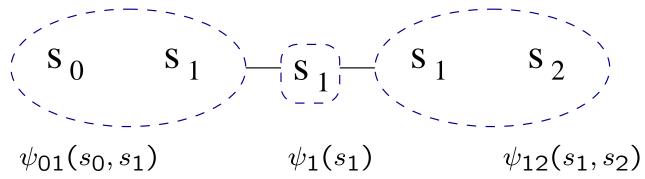
- Exact inference: review
- Model selection
 - basic ideas
 - minimum description length principle

Review: inference with junction trees

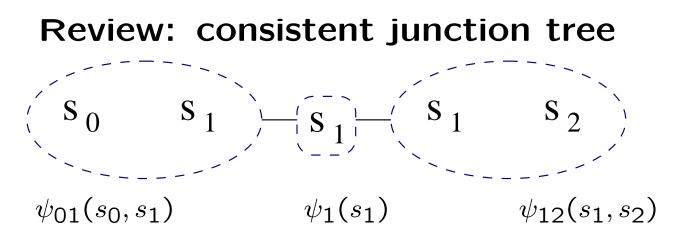
• By grouping nodes in the original graph



into larger clusters (cliques), we obtain a *junction tree* representation of the associated probability model



- The inference calculations in the junction tree reduce to making sure that the potentials are *consistent*
- Consistency is enforced through the two-stage (collect distribute) propagation algorithm



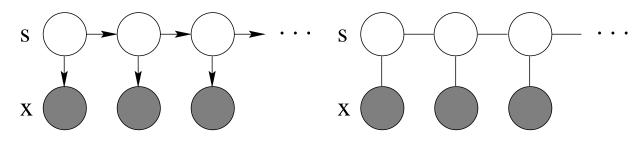
• After both propagation operations, the relevant information is consistent and stored locally

$$\psi_{01}(s_0, s_1) \propto P(s_0, s_1 | \text{evidence})$$

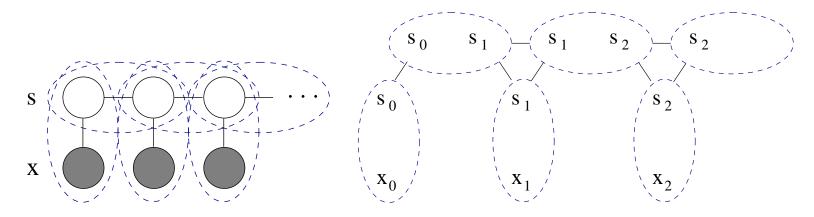
 $\psi_1(s_1) \propto P(s_1 | \text{evidence})$
 $\psi_{12}(s_1, s_2) \propto P(s_1, s_2 | \text{evidence})$

Example: hidden Markov model

• First we transform the HMM into an undirected graph model

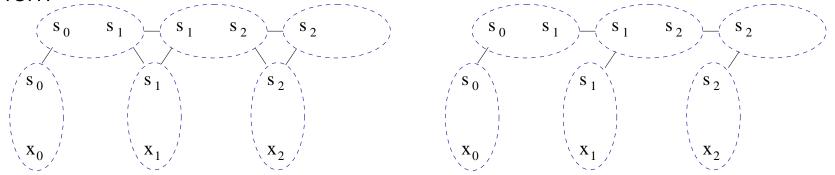


• Then we identify the cliques and construct the hyper-graph by connecting cliques that have variables in common

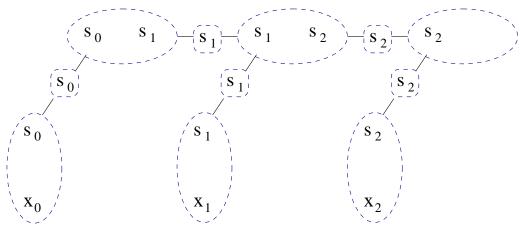


Example cont'd

• The hyper-graph can be transformed into a tree structure by dropping edges so long as any non-adjacent cliques that have variables in common still have these variables in the path between them

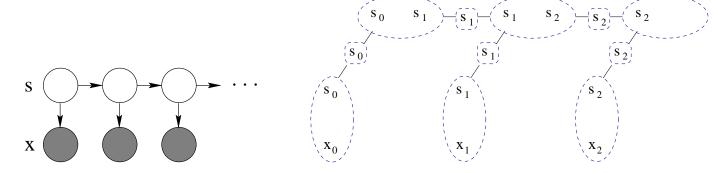


• Finally, we can construct the junction tree for HMMs



Initialization

• How do we initialize the junction tree if we cannot start from a nice consistent solution?



• We can initialize all the separators to unity and assign each conditional probability to a single clique that fully contains the associated variables. E.g.,

$$\psi_{01}(s_0, s_1) = P(s_0)P(s_1|s_0)$$

$$\psi_1(s_1) = 1$$

$$\psi_{0x}(s_0, x_0) = P(x_0|s_0)$$

and then apply the collect and distribute operations to achieve the "consistent solution"

Topics

- Model selection
 - basic ideas
 - minimum description length principle

Model selection

• We are looking for a general principle that allows us to select the best model from limited observations

"Explanation should be as simple as possible, but no simpler"

- What makes one explanation better than another?
 - generality?

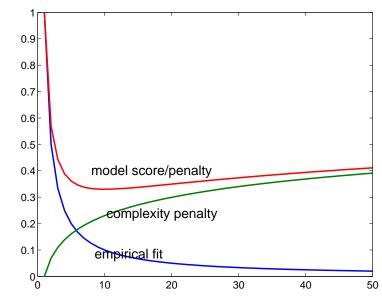
. . .

- fewer assumptions?
- how it is articulated?

• We need to find quantiable measures for automated comparison

Model selection: balance

- We need a criterion that appropriately balances some measure of model complexity (simplicity) with the empirical fit
 - complexity has to be measured on the same scale as the empirical fit



What is "noise"?

Minimum description length

• Minimum description length (MDL) principle:

We find a model that attains the minimum total encoding length: the length of the code needed to describe the observed data given the model and the length of the code needed to describe the model itself.

 $\begin{array}{c} \text{empirical fit} & \text{complexity} \\ \hline \text{Total } DL = (DL \text{ of data given the model}) + (DL \text{ of model}) \end{array}$

- A long description length (DL) may come from
 - a) poor explanation (likelihood) of the observed data
 - b) choosing too complex model (too many choices a priori)

Digression: encoding length

- Suppose we have a sequence of n random numbers y₁, y₂,... each drawn with probability P(y)
 1121111314111121...
- We need $-\log_2 P(y)$ bits to encode each number y Higer probability \Rightarrow smaller number of bits
- On average, it would take

$$\frac{1}{n}\sum_{t=1}^{n} -\log_2 P(y_t) = \frac{1}{n}\sum_{y} -N(y)\log_2 P(y)$$
$$\rightarrow \sum_{y} -P(y)\log_2 P(y)$$
$$= H(y)$$

bits to encode a single number. Here H(y) is the Shannon entropy (uncertainty) of the random numbers.

Minimum description length cont'd

- Suppose we observe n i.i.d. training examples $D = {x_1, ..., x_n}$
- Description length of the observed data given a specific setting of the model parameters $\overline{\theta}$:

$$-\log P(D|\overline{\theta}) = -\sum_{t=1}^{n} \log P(\mathbf{x}_t|\overline{\theta})$$

• Description length of the model parameters

 $-\log P(\bar{\theta})$

where $P(\overline{\theta})$ is a prior distribution over the parameters.

• Are these sufficient? How do we set the parameter $\overline{\theta}$?

Minimum description length cont'd

- We have to also decide the precision at which to encode the parameters $\overline{\theta}$ (why would be spare any bits for useless parameters?)
- We have to add a precision cost to the model description length

$$-\log P(\overline{\theta}) - \log(\delta)$$

where the parameters $\overline{\theta}$ are now described upto precision δ . High precision (small δ) \Rightarrow large precision cost

• The total description length is found by adding all the terms and optimizing the sum with respect to $\bar{\theta}$ and the precision δ

Total DL =
$$\min_{\bar{\theta}, \delta} \left\{ -\sum_{t=1}^{n} \log P(\mathbf{x}_t | \bar{\theta}) - \log P(\bar{\theta}) - \log(\delta) \right\}$$

(note that the possible choices of $\overline{\theta}$ depend on the precision δ)

Minimum description length cont'd

• Asymptotically (when the number of observations *n* is large) the description length reduces to

Total DL
$$\approx -\sum_{t=1}^{n} \log P(\mathbf{x}_t | \hat{\theta}) + \frac{d}{2} \log(n)$$

where d is the number of parameters in the model and $\hat{\theta}$ is the maximum likelihood parameter estimate.

• This still has the right flavor...

Minimum description length: example

• We have two binary variables x_1 and x_2 and two competing models

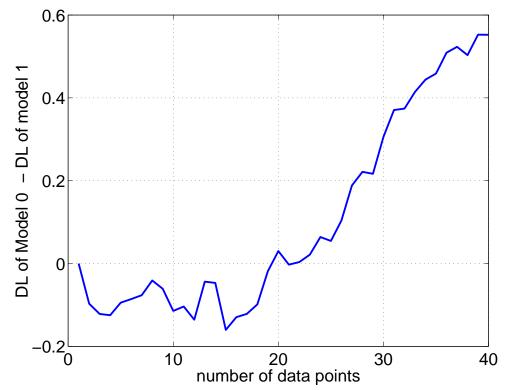
Model 0: two parameters needed for $P(x_1)P(x_2)$ Model 1: three parameters needed for $P(x_1, x_2)$

• Observed data:

(here $x_1 = 1$ and $x_2 = 1$ with probability 0.5 and otherwise x_1 and x_2 are selected uniformly at random)

Minimum description length: example

• The difference between the description lengths of the two models as a function of the number of data points:



The figure is averaged over several random generation of the training set

Review

- Main topics:
 - regression, classification
 - * linear/additive, Boosting, SVMs
 - generalization, regularization, feature selection
 - complexity, model selection
 - active learning, clustering
 - density models: mixture models, mixtures of experts
 * the EM-algorithm
 - dynamic models: Markov models, hidden Markov models
 - * forward-backward, viterbi
 - graphical models: representation, inference