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Lecture 3: active learning, classification



Topics

e Active learning and regression
— sequential/batch
— selection criteria

e Classification
— Regression approach to classification



Active learning: rules of the game

e Normal supervised learning:
— (input,output) pairs are sampled from an unknown joint dis-
tribution P(x,vy)

e Active learning:
— We can select the input examples, the corresponding outputs
are sampled from an unknown conditional distribution P(y|x)



Active learning

e Types of selection methods:

1. Batch selection:
We select all the input examples prior to seeing any outputs

2. Sequential selection:
We select each new input example on the basis of all the

information so far

e \We still need a specific selection criterion ...



From previous lecture...

e Given a fixed set of input examples, the noise in the outputs
generates variation in the estimated linear regression coefficients

Assumed ‘“true” model:
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where ¢; ~ N(0, 02).
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e Estimated linear coefficients:
true Prediction from noise

AN - ~
w= w" + (XTxX)=1xTe

e [ he estimated coefficients w are Gaussian random variables.




From previous lecture... cont’d

w=w"+ (XITX)"1XTe, e~ N(O, o21)
e We need to find the mean and the covariance of w:
E{w} = w"
E{(% —w)(%—-w)T} = E { (XTX)"1XT¢] [(XTX)—lee]T}
= E{(XTX)_lXTeeTX(XTX)_l}
(XTx)"1xTEg { el } X(xTx)-1
(XTX) " IXT (2 ) X(XTX) !
o2 (X1Tx)~1

e SO, finally we get

W~ N(w*, aQ(XTX)_l)



Active learning: batch selection

We have to select the input examples prior to seeing any outputs

e We wish to find n inputs z1,...,zn (which determine the matrix
X) so as to minimize some measure of randomness in the resulting
coefficients w

W~ N(w*, aQ(XTX)—l)

e What is the measure?



Active learning: batch selection

We have to select the input examples prior to seeing any outputs

e We wish to find n inputs z1,...,zn (which determine the matrix
X) so as to minimize some measure of randomness in the resulting
coefficients w

W~ N (w*, aQ(XTX)—l)
e What is the measure?

We find the points that minimize

det [(XTX)—l}



Digression:

‘“‘volume” of a Gaussian

e We can determine the “volume” of a Gaussian by looking at the

covariance matrix
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e More generally, “volume” is a function of the determinant of the

covariance matrix



Determinant criterion: example

e 1-d problem, 2nd order polynomial regression within x € [—1, 1]

flz:w) = wg + wiz + woz?

For n = 4, what points would we select?
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Determinant criterion: example

e 1-d problem, 2nd order polynomial regression within x € [—1, 1]

flz:w) = wg + wiz + woz?
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Active learning: sequential selection

We can select the next input example on the basis of all the
inputs and outputs already observed



Active learning: sequential selection

We can select the next input example on the basis of all the
inputs and outputs already observed

e \\We can also select the input points to reduce the variance in our
predictions

11" [ @
y(z) = wo + w1z = | ,@2]
T he variance in the prediction at x is
[ 1 T | T
X = 1 x5 Var {§(z)} = o2 i (XTx)1 [ 915 ]

— the noise variance o2 only affects the overall scale
— the variance is a function of previously chosen inputs, not
outputs!



Active learning: sequential selection

We can select the next input example on the basis of all the
inputs and outputs already observed

e Ve can also select the input points to reduce the variance in our

predictions

y(x) = wo + w1z =

1

The variance in the prediction at zx is

X =

1 zq1
1l x>

1 T

T

Var{y(x) } = o2

(xTx)~1 [ 1 ]

T

— the noise variance o2 only affects the overall scale
— the variance is a function of previously chosen inputs, not

outputs!

e [ he selection criterion:

2" = arg max { Var{y(x)} }



Sequential selection: example

e 1-d problem, 2nd order polynomial regression within x € [—1, 1]

j(x) = Wg + W1z + Wz’

A priori selected inputs 1 = —1,20 = 0,z3 = 1.
1 x4 a:i | 1 1t
X=| 1 a3 23| Var{g@)}=|=z | XTX)7?
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Example cont’d
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Topics

e Classification
— Regression approach to classification



Classification

Example: digit recognition (8x8 binary digits)

binary digit actual label target label in learning

112” 1
112” 1
lll” O

lll” O



Classification via regression

e We ignore the fact that the output is binary (e.g., 0/1) rather
than a continuous variable

Given a linear regression function

f(x;w) =wg+wixy + ... +wyxy

we minimize the squared difference between the predicted output
(continuous) and the observed label (binary):

Ta(w) =2 3" (i~ fOxii W))?
1=1

e How do we classify any new example x7



Classification via regression cont’d

f(x;w) =wg+wixy+ ... +wyxy
Any new (test) example x can be classified according to
label = 1 if f(x;w) > 0.5, and label = 0 otherwise

where f(x;w) = 0.5 defines the decision boundary.



Classification via regression cont’d

e [ his is not optimal... why not?

6 14 :
0 O
12f . ©
4t @ ©
10 e
8r %3 §O%
2L O
6,
9
4t %fo
or o
2,
—ob or
_27
_4 Il Il Il Il _4 Il Il Il Il
-4 -2 0 2 4 6 -5 0 5 10 15

sometimes good sometimes bad

20



