6.867 Machine learning and neural networks

Tommi Jaakkola MIT AI Lab tommi@ai.mit.edu

Lecture 3: active learning, classification

Topics

- Active learning and regression
 - sequential/batch
 - selection criteria
- Classification
 - Regression approach to classification

Active learning: rules of the game

- Normal supervised learning:
 - (input,output) pairs are sampled from an *unknown joint* distribution P(x,y)
- Active learning:
 - We can select the input examples, the corresponding outputs are sampled from an *unknown conditional* distribution P(y|x)

Active learning

- Types of selection methods:
 - 1. Batch selection:

We select all the input examples prior to seeing any outputs

2. Sequential selection:

We select each new input example on the basis of all the information so far

• We still need a specific selection criterion ...

From previous lecture...

• Given a fixed set of input examples, the noise in the outputs generates variation in the estimated linear regression coefficients

Assumed "true" model:

$$\begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ \cdots & \cdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} w_0^* \\ w_1^* \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \cdots \\ \epsilon_n \end{bmatrix}$$
$$\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$$
where $\epsilon_i \sim N(0, \sigma^2)$.

• Estimated linear coefficients:

$$\widehat{\mathbf{w}} = \underbrace{\widetilde{\mathbf{w}^*}}_{\mathbf{w}^*} + \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon}^{\text{from noise}}$$

 \bullet The estimated coefficients $\widehat{\mathbf{w}}$ are Gaussian random variables.

From previous lecture... cont'd

$$\hat{\mathbf{w}} = \mathbf{w}^* + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon, \quad \epsilon \sim N(0, \sigma^2 I)$$

• We need to find the mean and the covariance of $\widehat{\mathbf{w}}$:

$$E\{\hat{\mathbf{w}}\} = \mathbf{w}^*$$

$$E\{(\hat{\mathbf{w}} - \mathbf{w}^*)(\hat{\mathbf{w}} - \mathbf{w}^*)^T\} = E\{[(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon][(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon]^T\}$$

$$= E\{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon \epsilon^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}\}$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T E\{\epsilon \epsilon^T\} \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\sigma^2 I) \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}$$

$$= \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$$

• So, finally we get

$$\widehat{\mathbf{w}} \sim N\left(\mathbf{w}^*, \, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}\right)$$

Active learning: batch selection

We have to select the input examples prior to seeing any outputs

We wish to find n inputs x₁,..., x_n (which determine the matrix X) so as to minimize some measure of randomness in the resulting coefficients ŵ

$$\widehat{\mathbf{w}} \sim N\left(\mathbf{w}^*, \, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}\right)$$

• What is the measure?

Active learning: batch selection

We have to select the input examples prior to seeing any outputs

We wish to find n inputs x₁,..., x_n (which determine the matrix X) so as to minimize some measure of randomness in the resulting coefficients ŵ

$$\widehat{\mathbf{w}} \sim N\left(\mathbf{w}^*, \, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}\right)$$

• What is the measure?

We find the points that minimize

$$\mathsf{det}\left[\,(\mathbf{X}^T\mathbf{X})^{-1}\,
ight]$$

Digression: "volume" of a Gaussian

• We can determine the "volume" of a Gaussian by looking at the covariance matrix

• More generally, "volume" is a function of the determinant of the covariance matrix

Determinant criterion: example

• 1-d problem, 2nd order polynomial regression within $x \in [-1, 1]$

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2$$

For n = 4, what points would we select?

Determinant criterion: example

• 1-d problem, 2nd order polynomial regression within $x \in [-1, 1]$

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2$$

For n = 4, what points would we select?

Active learning: sequential selection

We can select the next input example on the basis of all the inputs and outputs already observed

Active learning: sequential selection

We can select the next input example on the basis of all the inputs and outputs already observed

• We can also select the input points to reduce the variance in our *predictions*

$$\hat{y}(x) = \hat{w}_0 + \hat{w}_1 x = \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} \hat{w}_0 \\ \hat{w}_1 \end{bmatrix}$$

The variance in the prediction at x is

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \end{bmatrix} \quad Var\left\{\hat{y}(x)\right\} = \sigma^2 \begin{bmatrix} 1 \\ x \end{bmatrix}^T (\mathbf{X}^T \mathbf{X})^{-1} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

- the noise variance σ^2 only affects the overall scale
- the variance is a function of previously chosen inputs, not outputs!

Active learning: sequential selection

We can select the next input example on the basis of all the inputs and outputs already observed

• We can also select the input points to reduce the variance in our *predictions*

$$\hat{y}(x) = \hat{w}_0 + \hat{w}_1 x = \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} \hat{w}_0 \\ \hat{w}_1 \end{bmatrix}$$

The variance in the prediction at \boldsymbol{x} is

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \end{bmatrix} \quad Var\left\{\hat{y}(x)\right\} = \sigma^2 \begin{bmatrix} 1 \\ x \end{bmatrix}^T (\mathbf{X}^T \mathbf{X})^{-1} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

- the noise variance σ^2 only affects the overall scale
- the variance is a function of previously chosen inputs, not outputs!
- The selection criterion:

$$x^{new} = \arg\max_{x} \left\{ Var\left\{ \hat{y}(x) \right\} \right\}$$

Sequential selection: example

• 1-d problem, 2nd order polynomial regression within $x \in [-1, 1]$

$$\hat{y}(x) = \hat{w}_0 + \hat{w}_1 x + \hat{w}_2 x^2$$

A priori selected inputs $x_1 = -1, x_2 = 0, x_3 = 1$.

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \dots & \dots & \dots \end{bmatrix} \quad Var\left\{\hat{y}(x)\right\} = \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}^T (\mathbf{X}^T \mathbf{X})^{-1} \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$$

Topics

• Classification

- Regression approach to classification

Classification

Example: digit recognition (8x8 binary digits)

binary digit actual label target label in learning "2" 1 "2" 1 "1" 0 "1" 0 . . .

Classification via regression

• We ignore the fact that the output is binary (e.g., 0/1) rather than a continuous variable

Given a linear regression function

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$$

we minimize the squared difference between the predicted output (continuous) and the observed label (binary):

$$J_n(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^n (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$$

 \bullet How do we classify any new example $\mathbf{x}?$

Classification via regression cont'd

 $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$

Any new (test) example \mathbf{x} can be classified according to

label = 1 if $f(\mathbf{x}; \mathbf{w}) > 0.5$, and label = 0 otherwise where $f(\mathbf{x}; \mathbf{w}) = 0.5$ defines the decision boundary.

Classification via regression cont'd

• This is not optimal... why not?

