
6.867 Machine learning and neural networks

Tommi Jaakkola

MIT AI Lab

tommi@ai.mit.edu

Lecture 3: active learning, classification



Topics

• Active learning and regression

– sequential/batch

– selection criteria

• Classification

– Regression approach to classification



Active learning: rules of the game

• Normal supervised learning:

– (input,output) pairs are sampled from an unknown joint dis-

tribution P (x, y)

• Active learning:

– We can select the input examples, the corresponding outputs

are sampled from an unknown conditional distribution P (y|x)



Active learning

• Types of selection methods:

1. Batch selection:

We select all the input examples prior to seeing any outputs

2. Sequential selection:

We select each new input example on the basis of all the

information so far

• We still need a specific selection criterion ...



From previous lecture...

• Given a fixed set of input examples, the noise in the outputs

generates variation in the estimated linear regression coefficients
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Assumed “true” model: y1
· · ·
yn

 =

 1 x1
· · · · · ·

1 xn

 [ w∗0
w∗1

]
+

 ε1· · ·
εn


y = Xw∗+ ε

where εi ∼ N(0, σ2).

• Estimated linear coefficients:

ŵ =

true︷︸︸︷
w∗ +

prediction from noise︷ ︸︸ ︷
(XTX)−1XT ε

• The estimated coefficients ŵ are Gaussian random variables.



From previous lecture... cont’d

ŵ = w∗+ (XTX)−1XT ε, ε ∼ N(0, σ2 I )

• We need to find the mean and the covariance of ŵ:

E{ ŵ } = w∗

E{ (ŵ −w∗)(ŵ −w∗)T } = E

{[
(XTX)−1XT ε

] [
(XTX)−1XT ε

]T}
= E

{
(XTX)−1XT εεTX(XTX)−1

}
= (XTX)−1XTE

{
εεT

}
X(XTX)−1

= (XTX)−1XT (σ2 I) X(XTX)−1

= σ2 (XTX)−1

• So, finally we get

ŵ ∼ N
(

w∗, σ2(XTX)−1
)



Active learning: batch selection

We have to select the input examples prior to seeing any outputs

• We wish to find n inputs x1, . . . , xn (which determine the matrix

X) so as to minimize some measure of randomness in the resulting

coefficients ŵ

ŵ ∼ N
(

w∗, σ2(XTX)−1
)

• What is the measure?



Active learning: batch selection

We have to select the input examples prior to seeing any outputs

• We wish to find n inputs x1, . . . , xn (which determine the matrix

X) so as to minimize some measure of randomness in the resulting

coefficients ŵ

ŵ ∼ N
(

w∗, σ2(XTX)−1
)

• What is the measure?

We find the points that minimize

det
[

(XTX)−1
]



Digression: “volume” of a Gaussian

• We can determine the “volume” of a Gaussian by looking at the

covariance matrix
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• More generally, “volume” is a function of the determinant of the

covariance matrix



Determinant criterion: example

• 1-d problem, 2nd order polynomial regression within x ∈ [−1,1]

f(x; w) = w0 + w1x+ w2x
2

For n = 4, what points would we select?
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Determinant criterion: example

• 1-d problem, 2nd order polynomial regression within x ∈ [−1,1]

f(x; w) = w0 + w1x+ w2x
2

For n = 4, what points would we select?
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x1 = −1, x2 = 0, x3 = 0, x4 = 1



Active learning: sequential selection

We can select the next input example on the basis of all the

inputs and outputs already observed



Active learning: sequential selection

We can select the next input example on the basis of all the

inputs and outputs already observed

• We can also select the input points to reduce the variance in our

predictions

ŷ(x) = ŵ0 + ŵ1x =

[
1
x

]T [
ŵ0
ŵ1

]
The variance in the prediction at x is

X =

 1 x1
1 x2
. . . . . .

 V ar { ŷ(x) } = σ2
[

1
x

]T
(XTX)−1

[
1
x

]

– the noise variance σ2 only affects the overall scale

– the variance is a function of previously chosen inputs, not

outputs!



Active learning: sequential selection

We can select the next input example on the basis of all the
inputs and outputs already observed

• We can also select the input points to reduce the variance in our
predictions

ŷ(x) = ŵ0 + ŵ1x =

[
1
x

]T [
ŵ0
ŵ1

]
The variance in the prediction at x is

X =

 1 x1
1 x2
. . . . . .

 V ar { ŷ(x) } = σ2
[

1
x

]T
(XTX)−1

[
1
x

]

– the noise variance σ2 only affects the overall scale
– the variance is a function of previously chosen inputs, not

outputs!

• The selection criterion:

xnew = argmax
x

{
V ar { ŷ(x) }

}



Sequential selection: example

• 1-d problem, 2nd order polynomial regression within x ∈ [−1,1]

ŷ(x) = ŵ0 + ŵ1x+ ŵ2x
2

A priori selected inputs x1 = −1, x2 = 0, x3 = 1.

X =

 1 x1 x2
1

1 x2 x2
2

. . . . . . . . .

 V ar { ŷ(x) } =

 1
x

x2


T

(XTX)−1

 1
x

x2


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Example cont’d
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Topics

• Classification

– Regression approach to classification



Classification

Example: digit recognition (8x8 binary digits)

binary digit actual label target label in learning

“2” 1

“2” 1

“1” 0

“1” 0
. . . . . .



Classification via regression

• We ignore the fact that the output is binary (e.g., 0/1) rather

than a continuous variable

Given a linear regression function

f(x; w) = w0 + w1x1 + . . .+ wdxd

we minimize the squared difference between the predicted output

(continuous) and the observed label (binary):

Jn(w) =
1

2

n∑
i=1

(yi − f(xi; w))2

• How do we classify any new example x?



Classification via regression cont’d

f(x; w) = w0 + w1x1 + . . .+ wdxd

Any new (test) example x can be classified according to

label = 1 if f(x; w) > 0.5, and label = 0 otherwise

where f(x; w) = 0.5 defines the decision boundary.



Classification via regression cont’d

• This is not optimal... why not?
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