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Lecture 4: classification



Topics

• Classification

– Fisher linear discriminant analysis

– Generative probabilistic classifiers

– Discriminative classifiers, additive models



Beyond regression: Fisher linear discriminant
analysis

• Assume two sets of examples (classes 1 and 0) with means µ1,

µ0 and covariances Σ1, Σ0 (not necessarily normal).

• We try to find a direction w = [w1, . . . , wd]
T in the input space

such that projecting the sets along this dimension makes them

“well-separated”.



Fisher linear discriminant analysis cont’d

• More mathematically: we find a direction w (linear projection)
that maximizes

JFisher(w) =
(Separation of projected means)2

Sum of within population variances

=
(wTµ1 −wTµ0)2

wT (n1Σ1 + n0Σ0)w

• The solution is w = (n1Σ1 + n0Σ0)−1(µ1 − µ0)
– optimal for two normal (Gaussian) populations with equal co-

variances (Σ1 = Σ0)



Background: projected examples

• The mean and the covariance of the examples in class 1 are

µ̂1 =
1

n1

∑
i∈class 1

xi

Σ̂1 =
1

n1

∑
i∈class 1

(xi − µ̂1)(xi − µ̂1)T

and similarly for µ̂0 and Σ̂0. Here ni for i = 0,1 denote the
number of examples in each class.

• When we project each example xi along w, we get two one dimen-
sional sets of examples (projected examples denoted by zi(w)).
We can compute the means m̂ and variances σ̂2 of these new
examples within each class:

zi(w) = wTxi, m̂1(w) = wT µ̂1, σ̂2
1(w) = wT Σ̂1w

• In Fisher discriminant analysis, we maximize

JFisher(w) =
(m̂1(w)− m̂0(w))2

n1σ̂
2
1(w) + n0σ̂

2
0(w)

=
(wT µ̂1 −wT µ̂0)2

wT (n1Σ̂1 + n0Σ̂0)w



Fisher linear discriminant analysis: example

• Binary digits “1” versus “7”

This is approximately the matrix difference “1” - “7”

≈ -



Generative and discriminative classification

• We can try to make classification decisions in two ways

1. Generative (≈ P (x|y))

– Build a model over the input examples in each class and

classify based on how well the resulting class conditional

models explain any new input example

2. Discriminative (≈ P (y|x))

– Only model decisions given the input examples (no model is

constructed over the input examples)



Generative approach to classification

• We can model each class conditional population with a multi-

variate normal (Gaussian) distribution

x ∼ N(µ1,Σ1), y = 1

x ∼ N(µ0,Σ0), y = 0

where

p(x|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp{ −

1

2
(x− µ)TΣ−1(x− µ) }

• How do we make decisions?



Mixture classifier cont’d

• Examples x are classified on the basis of which Gaussian explains

the data better

log
P (x|µ1,Σ1)

P (x|µ0,Σ0)
> 0 y = 1

≤ 0 y = 0

or, more generally, when the classes have different a priori prob-

abilities, we use the posterior probability

P (y = 1|x) =
P (x|µ1,Σ1)P (y = 1)

P (x|µ1,Σ1)P (y = 1) + P (X|µ0,Σ0)P (y = 0)

• The corresponding decision boundaries are

log
P (x|µ1,Σ1)

P (x|µ0,Σ0)
= 0 or P (y = 1|x) = 0.5



Mixture classifier: decision rule

• Equal covariances

x ∼ N(µ1,Σ), y = 1

x ∼ N(µ0,Σ), y = 0
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• The decision rule is linear



Mixture classifier: decision rule

• Unequal covariances

x ∼ N(µ1,Σ1), y = 1

x ∼ N(µ0,Σ0), y = 0
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• The decision rule is quadratic



Maximum likelihood estimation

• We can estimate the class conditional distributions p(x|µ,Σ) sep-

arately (why?)

• For a multivariate Gaussian model

p(x|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp{ −

1

2
(x− µ)TΣ−1(x− µ) }

given a random sample {x1, . . . ,xn}, the maximum likelihood es-

timates of the parameters are:

1. Sample mean

µ̂ =
1

n

n∑
i=1

xi

2. Sample covariance

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T



Discriminative classification

• If we are only interested in the classification decisions, why should

we bother with a model over the input examples?
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• We could directly estimate the conditional distribution of labels

given the examples or P (y|x, θ) where θ = {µ0, µ1,Σ0,Σ1}.

• What do we gain? What do we loose?



Back to the Gaussians... (1-dim)

• When the classes are equally likely a priori, the posterior proba-

bilily of the label y = 1 given x is given by

P (y = 1|x, θ) =
P (x|µ1, σ

2
1)

P (x|µ1, σ
2
1) + P (x|µ0, σ

2
0)

=
1

1 + exp
{
− log

P (x|µ1,σ
2
1)

P (x|µ0,σ
2
0)

}
where θ = {µ0, µ1, σ

2
1, σ

2
0}.



Back to the Gaussians... (1-dim)
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• Since the decision boundary is linear or quadratic, we know that
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for some coefficients w.



Back to the Gaussians... (1-dim)

• When the classes are equally likely a priori, the posterior proba-

bilily of the label y = 1 given x is given by

P (y = 1|x, θ) =
P (x|µ1, σ

2
1)

P (x|µ1, σ
2
1) + P (x|µ0, σ

2
0)

=
1

1 + exp
{
− log

P (x|µ1,σ
2
1)

P (x|µ0,σ
2
0)

}
where θ = {µ0, µ1, σ

2
1, σ

2
0}.

• Since the decision boundary is linear or quadratic, we know that

log
P (x|µ1, σ

2
1)

P (x|µ0, σ
2
0)

=

{
w0 + w1x, when σ2

1 = σ2
0

w′0 + w′1x+ w′2x
2, otherwise
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• When the variances are equal, we can write the posterior proba-

bility as a squashed linear prediction:

P (y = 1|x,w) =
1

1 + exp {−(w0 + w1x)}
= g (w0 + w1x )

where g(z) = (1 + exp{−z})−1.



Generalized linear models

• When the two Gaussian distributions have equal covariances, the

posterior class probability P (y = 1|x) from the mixture model

reduces to a logistic regression model

P (y = 1|x,w) = g (w0 + w1x1 + . . .+ wdxd )

where the parameters w are functions of µ1,µ0, and the common

covariance Σ. Here g(z) = (1 + exp(−z))−1 is known as the

logistic function.
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Fitting logistic regression models

• Since the classification model gives a probability distribution over

the labels y given the input x we can fit these models using the

maximum likelihood criterion

L(D; w) =
n∏
i=1

P (yi|xi,w)

where

P (y = 1|x,w) = g (w0 + w1x1 + . . .+ wdxd )

Note: this is very different from the generative maximum likeli-

hood fitting of mixture models



Stochastic gradient ascent for logistic regression

• We can try to maximize the likelihood in an on-line or incremental

fashion.

Given each training example xi and the corresponding binary

(0/1) label yi, we change the parameters slightly to increase the

(log-)probability of this particular label:

w ← w + ε
∂

∂w
logP (yi|xi,w)

= · · ·

= w + ε
(
yi − P (yi = 1|xi,w)

)
︸ ︷︷ ︸

prediction error

[
1
xi

]
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Stochastic gradient ascent cont’d

• Logistic regression model

P (y = 1|x,w) = g (w0 + w1x1 + . . .+ wdxd )

• Simple on-line parameter update rule

w ← w + ε
(
yi − P (yi = 1|xi,w)

)
︸ ︷︷ ︸

prediction error

[
1
xi

]

w 

(0,0,0,...,0) 

decision boundary 

label = 1

ε (y−p) X 



Stochastic gradient ascent: convergence

• The on-line learning method converges when we do not move in

any direction on average:

n∑
i=1

(
yi − P (yi = 1|xi,w)

)
︸ ︷︷ ︸

prediction error

[
1
xi

]
= 0

where the summation is over the training set.

• The prediction error is again decorrelated with the inputs!
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Additive models and classification

• Similarly to linear regression models, we can extend the logistic
regression models via additive models

P (y = 1|x,w) = g (w0 + w1φ1(x) + . . . wmφm(x) )

x1 x2

φ
m

(x). . .

1w wm

• How should we then choose the basis functions φi(x)?

• One approach is to make them adjustable...


