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Lecture 4: classification



Topics

e Classification
— Fisher linear discriminant analysis
— Generative probabilistic classifiers
— Discriminative classifiers, additive models



Beyond regression: Fisher linear discriminant
analysis

e Assume two sets of examples (classes 1 and 0) with means u1,
(o and covariances 31, > (not necessarily normal).

e We try to find a direction w = [wl,...,wd]T in the input space
such that projecting the sets along this dimension makes them
“well-separated”.



Fisher linear discriminant analysis cont’d

e More mathematically: we find a direction w (linear projection)
that maximizes

(Separation of projected means)?

Sum of within population variances
(whpg —wlpg)?

wl(n1X1 +noXp)w

JFisher(W) —

e The solution is w = (n1X1 + ng=Zg) (1 — po)
— optimal for two normal (Gaussian) populations with equal co-
variances (X1 = Xp)



Background: projected examples

e T he mean and the covariance of the examples in class 1 are

R 1
H1l = e Z Xq
lieclass 1
_ 1 " N
1 = — ) (x—p1)(x—pA1)

T
licclass 1

and similarly for fig and >g. Here n; for i = 0,1 denote the
number of examples in each class.

e \When we project each example x; along w, we get two one dimen-
sional sets of examples (projected examples denoted by z;(w)).
We can compute the means m and variances 52 of these new
examples within each class:

T T

z(w) =wlx;, mi(w)=w'f, 6i(w)=w'Siw
e In Fisher discriminant analysis, we maximize
(mi(w) —mo(w))? _ (wliy —wlip)?

JFisher(W - > >
Fisher(W) nla%(w) + no&g(w) WT(nlzl + no2g)w



Fisher linear discriminant analysis: example

e Binary digits “1"” versus “7"

This is approximately the matrix difference “1" - “7"

Q



Generative and discriminative classification

e \We can try to make classification decisions in two ways

1. Generative (= P(x|y))
— Build a model over the input examples in each class and
classify based on how well the resulting class conditional
models explain any new input example

2. Discriminative (= P(y|x))
— Only model decisions given the input examples (no model is
constructed over the input examples)



Generative approach to classification

e \We can model each class conditional population with a multi-
variate normal (Gaussian) distribution

x ~ N(pi,21), y=1
x ~ N(pg,xg), y=0

where

1
p(x|p, )

~ 2mPRD|?

expf — (x— )= 10— 1))

e How do we make decisions?



Mixture classifier cont’d

Examples x are classified on the basis of which Gaussian explains
the data better

P(X|:UJ17 Zl)
P(x|p1o, X0)

log > 0 y=1
< 0y=0

or, more generally, when the classes have different a priori prob-
abilities, we use the posterior probability

P(x|p1,X1)P(y =1)
P(x|p1,X1)P(y =1) 4+ P(X|po, Xo)P(y = 0)

Py =1[x) =

The corresponding decision boundaries are

P(x|p1,21)
P(x|po, 20)

log =0 or P(y=1|x)=0.5



Mixture classifier: decision rule

e Equal covariances

e | he decision rule is linear



Mixture classifier: decision rule

e Unequal covariances

X ~ N(ui,x1), y=1
X ~ N(MOazO)a y:O

-4 -2 0 2 4 6 8

e [ he decision rule is quadratic



Maximum likelihood estimation

e We can estimate the class conditional distributions p(x|u,>) sep-
arately (why?)

e For a multivariate Gaussian model

1 1 Ts—1
X\, 2-) = expy ——(x — 2 X —
given a random sample {x1,...,Xn}, the maximum likelihood es-

timates of the parameters are:

1. Sample mean

2. Sample covariance

_ 1 2 . .
2 = " Z (x; — 1) (x; —M)T
1=1



Discriminative classification

e If we are only interested in the classification decisions, why should
we bother with a model over the input examples?
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e \We could directly estimate the conditional distribution of labels
given the examples or P(y|x,0) where 6 = {ug, pn1, >0, 21}

e \WWhat do we gain? What do we |loose?



Back to the Gaussians... (1-dim)

e When the classes are equally likely a priori, the posterior proba-
bilily of the label y = 1 given x is given by

P 2 1

P(x|po,03)

where 6 = {,uO,,ul,af,a(Q) :



Back to the Gaussians... (1-dim)

e When the classes are equally likely a priori, the posterior proba-
bilily of the label y = 1 given x is given by

P 2 1

P(:U|U17O-%) + P(£|U070'8) B 1 4+ exp {_ log P(leaUz)}
P(LC|,LLO,O‘O)
where 6 = {,uO,,ul,af,a(Q) :

e Since the decision boundary is linear or quadratic, we know that

log

P($|M170%) | wog +wqiz, when a% = 08
P(x|up, 08) wy + wiz + w’2x2, otherwise

for some coefficients w.



Back to the Gaussians... (1-dim)

When the classes are equally likely a priori, the posterior proba-
bilily of the label y = 1 given x is given by

P(z|p1,0%) 1

P(y = 1|z,0) =

P(alu1,07) + P(2lh0,98) 1 4 exp {100 P<x|m,o%>}
P(z|p0,03)

where 0 = {yug, 1,07, 05}

Since the decision boundary is linear or quadratic, we know that

log

P(x|p1, 0%) | wog 4+ wyz, when 0% = 08
P(z|po, 08) wh + wiz + whz?, otherwise
for some coefficients w.

When the variances are equal, we can write the posterior proba-
bility as a squashed linear prediction:

1
1 4+ exp {—(wg +w1z)}
where g(z) = (1 4+ exp{—2})"1L.

Py =1llz,w) =

=g (wo +wix)



Generalized linear models

e \When the two Gaussian distributions have equal covariances, the
posterior class probability P(y = 1|x) from the mixture model
reduces to a logistic regression model

Py =1|x,w) = g(wo +wiz1 + ... + wgzy)

where the parameters w are functions of ui,ug, and the common

covariance ~. Here g(z) = (1 + exp(—=z))~1 is known as the
logistic function.

e Robustness



Fitting logistic regression models

e Since the classification model gives a probability distribution over

the labels y given the input x we can fit these models using the
maximum likelihood criterion

mn
L(D;w) = | P(yslxi, w)
i=1

where

Ply=1|x,w) =g (wg +wiz1 + ... +wqzyq)

Note: this is very different from the generative maximum likeli-
hood fitting of mixture models



Stochastic gradient ascent for logistic regression

e \We can try to maximize the likelihood in an on-line or incremental
fashion.

Given each training example x; and the corresponding binary
(0/1) label y;, we change the parameters slightly to increase the
(log-)probability of this particular label:

w «— w+ ei log P(y;|x;, W)
ow

7

= w+e (y— Py = 1x;,w)) [1 ]

N — X4
prediction error

where € is the learning rate.




Stochastic gradient ascent cont’d

e L Ogistic regression model

Py =1[x,w) = g(wo + wiz1+ ... + wgzq)

e Simple on-line parameter update rule

N 7/ X’L

1
w o we (y— Py = 1x;, w)) [ ]
predictiBn error

€ (y—p) X / *

(0,0,0,...,0)



Stochastic gradient ascent: convergence

e [ he on-line learning method converges when we do not move in
any direction on average:

i (y’i_P(yz’= 1|Xz'>W)) [i] =0
=1 * 7

prediction error

where the summation is over the training set.

e [ he prediction error is again decorrelated with the inputs!

ﬂwmx/\

(0,0,0,...,0)



Additive models and classification

e Similarly to linear regression models, we can extend the logistic
regression models via additive models

Ply=1lx,w) = g(wo + w1¢1(x) + ... wmPm(x))

X1 %o

e How should we then choose the basis functions ¢;(x)7?
e One approach is to make them adjustable...



