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Lecture 5: classification, regularization



Topics

• Classification cont’d

– Additive logistic regression

– Neural networks

• Regularization

– empirical loss, expected loss

– effective number of parameters

– prior probabilities



Additive models and classification

• Similarly to linear regression models, we can extend logistic re-
gression models through additive models

P (y = 1|x,w) = g (w0 + w1φ1(x) + . . . wmφm(x) )

x1 x2

φ
m

(x). . .

1w wm

• How should we then choose the basis functions φi(x)?

• One approach is to make them adjustable...



Two layer neural network model

• In a neural network model, the basis functions themselves are
adjustable (e.g., squashed linear regression models)

P (y = 1|x,w) = g (w0 + w1φ1(x) + . . . wmφm(x) )

x1 x2

wm2

. . .

1w wm

φm(x) = g(wm0 + wm1x1 + wm2x2 )

• We can adjust the model parameters, e.g., via stochastic gradient
ascent



Review: stochastic gradient ascent

• For a logistic regression model with fixed basis functions

P (y = 1|x,w) = g (w0 + w1φ1(x) + . . .+ wmφm(x) )

we get simple on-line parameter updates

w ← w + ε
∂

∂w
logP (yi|xi,w)

= w + ε
(
yi − P (yi = 1|xi,w)

)
︸ ︷︷ ︸

prediction error
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Computing the gradient: back-propagation

Let z, zi, i = 1, . . . ,m be the total “input” to each “neuron”

computed in response to a training example x

z = w0 + w1g(z1) + . . .+ wmg(zm)

zi = wi0 + wi1x1 + wi2x2, i = 1, . . . ,m

x1 x2

g(z  )m

w
m2

 

. . .

1w wm

P(y=1|x,w) = g(z)



Back-propagation cont’d

• We can propagate the derivatives with respect to the inputs z

δ =
∂

∂z
logP (y|x,w)

δi =
∂

∂zi
logP (y|x,w)

=
∂g(zi)

∂zi
×

∂z

∂g(zi)
×

∂

∂z
logP (y|x,w)

= g′(zi)× wi × δ x1 x2

g(z  )m

w
m2

 

. . .

1w wm

P(y=1|x,w) = g(z)

• The derivatives with respect to the weights wij are obtained from

δ’s

∂

∂wij
logP (y|x,w) =

∂zi
∂wij

×
∂

∂zi
logP (y|x,w)

= xj × δi



Topics

• Regularization

– empirical loss, expected loss

– effective number of parameters

– prior probabilities



Empirical/expected loss

• Simple example: m parameter choices, n training examples

Ln(w1) =
1

n

n∑
i=1

Loss(yi, f(xi,w1))

. . .

Ln(wm) =
1

n

n∑
i=1

Loss(yi, f(xi,wm))

• The empirical loss corresponding to each parameter choice is
distributed around the expected loss.



Empirical/expected loss

• We’d like the empirical loss of our parameter estimate ŵ to be

close to its expected value

Ln(wk) =
1

n

n∑
i=1

Loss(yi, f(xi,wk)), k = 1, . . . ,m

Ln(ŵ) = min
i
{Ln(wi) }

This is a bit problematic...



Empirical/expected loss

• We’d like the empirical loss of our parameter estimate ŵ to be

close to its expected value

Ln(wk) =
1

n

n∑
i=1

Loss(yi, f(xi,wk)), k = 1, . . . ,m

Ln(ŵ) = min
i
{Ln(wi) }

This is a bit problematic...

Suppose for simplicity that all the empirical losses corresponding

to the different parameter choices are independent (in general

they are not).

Suppose further that they all have a simple Gaussian distribution

around their expected losses and that the expected losses are all

identical

• How is Ln(ŵ) = mini {Ln(wi) } distributed in this case?



Empirical/expected loss cont’d

• How is mini {Ln(wi) } distributed in the simple case where each

Ln(wk) =
1

n

n∑
i=1

Loss(yi, f(xi,wk)),

is a zero mean Gaussian?
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Empirical/expected loss cont’d

• The parameters w are often continuous valued... what is m?

Ln(w1) =
1

n

n∑
i=1

Loss(yi, f(xi,w1))

. . .

Ln(wm) =
1

n

n∑
i=1

Loss(yi, f(xi,wm))

to almost identical losses
Parameter choices within the region lead

Parameters W

• Effectively we only have a discrete number of parameter choices



Regularization

• The purpose of regularization is to improve generalization

1. Regularization limits the effective number of parameter choices

⇒ empirical loss of ŵ close to the expected loss

2. We can also use regularization to incorporate prior knowledge

• Regularization comes in many flavors:

1. Keep parameter values small (avoid overly strong predictions)

2. Complexity penalties (e.g., for linear/quadratic)

3. Feature/component/subset selection

etc.



Regularization: example

• Logistic regression model again

P (y = 1|x,w) = g(w0 + w1x1 + . . .+ wdxd )

• Maximum penalized likelihood (i.e., with regularization):

Jn(w;C) =
n∑
i=1

logP (yi|xi,w)−
C

2
‖w‖2

where larger values of C impose stronger regularization.

• How are we limiting our choices here?
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• How can we set C?



Regularization and prior probability

• Let’s assign a simple Gaussian prior probability over the parame-

ters w in the logistic regression model

P (w) = N(w;µ, σ2I)

and maximize the log-probability of the observed data and the

parameters

Jn(w;C) =
n∑
i=1

logP (yi|xi,w) + logP (w)

=
n∑
i=1

logP (yi|xi,w)−
1

2σ2
‖w‖2 + const

This is the same as before so long as we define C = 1/σ2



Modified stochastic gradient ascent

• Overall objective:

Jn(w;C) =
n∑
i=1

logP (yi|xi,w)−
C

2
‖w‖2

=
n∑
i=1

[
logP (yi|xi,w)−

C

2n
‖w‖2

]
• For a regularized logistic regression model we still get simple on-

line parameter updates

w ← w + ε
∂

∂w

[
logP (yi|xi,w)−

C

2n
‖w‖2

]
= ( 1−

εC

n
) w + ε

(
yi − P (yi = 1|xi,w)

)
︸ ︷︷ ︸

prediction error

[
1
xi

]


