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ecture 5: classification, regularization



Topics

e Classification cont'd
— Additive logistic regression
— Neural networks

e Regularization
— empirical loss, expected loss
— effective number of parameters
— prior probabilities



Additive models and classification

e Similarly to linear regression models, we can extend logistic re-
gression models through additive models

Ply=1lx,w) = g(wo + w1¢1(x) + ... wmPm(x))

X1 %o

e How should we then choose the basis functions ¢;(x)7?
e One approach is to make them adjustable...



Two layer neural network model

e In a neural network model, the basis functions themselves are
adjustable (e.g., squashed linear regression models)

Ply=1x,w) = g(wo+wi¢1(x)+ ... wmdm(x))

dm(x) = g(wmo + wm1T1 + wy2x2)

X1 %o

e \We can adjust the model parameters, e.g., via stochastic gradient
ascent



Review: stochastic gradient ascent

e For a logistic regression model with fixed basis functions

Py =1|x,w) = g(wg + w1¢1(X) + ... + wmdm(x))
we get simple on-line parameter updates

W w—i—eilogP(yﬂXi,w)
ow

1
X
= WwWe (yz — P(y; = 1|Xz"W>) .gb.l.( )
prediction error | ¢m(x) |
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Computing the gradient: back-propagation

Let 2z, z;,,: = 1,...,m be the total “input” to each “neuron”
computed in response to a training example x

wo +wi19(21) + ... + wmg(zm)
wip + wij1x1 + wigzr2, t=1,...,m

T P(y=1jx,w) = 9(2)

z

Zq




Back-propagation cont’d

e \We can propagate the derivatives with respect to the inputs z
T P(y=1Jx,w) = g(2)

0
5 = ——log P(ylx,w)

0z

6; = 9 log P(y|x, w)
0z;

1
= 99(zi) X 0z X 9 log P(y|x, w)
0z; dg(z;) Oz

= ¢'(2;) x w; X 6

e [ he derivatives with respect to the weights w;; are obtained from
d'S
8,2,&- 0

log P(y|x,w) = x — log P(y|x,w)

= ZCjXCSZ'



Topics

e Regularization
— empirical loss, expected loss
— effective number of parameters
— prior probabilities



Empirical/expected loss

e Simple example: m parameter choices, n training examples

Ln(w1)

Z LOSS(yia f(Xi7 Wl))

Lp(wm) = Z Loss(y;, f(xi, Wm))

N
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e [ he empirical loss corresponding to each parameter choice is
distributed around the expected loss.




Empirical/expected loss

e We'd like the empirical loss of our parameter estimate w to be
close to its expected value

1 n
Ln(wk) — 5 Z I—OSS(yiaf(Xiawk>)7 k=1,...,m
1=1
Ln(w) = min{ Ln(w;) }

This is a bit problematic...



Empirical/expected loss

e We'd like the empirical loss of our parameter estimate w to be
close to its expected value

1 n
Ln(wk) — 5 Z I—OSS(yiaf(Xiawk>)7 k=1,...,m
1=1
Ln(w) = min{ Ln(w;) }

This is a bit problematic...

Suppose for simplicity that all the empirical losses corresponding
to the different parameter choices are independent (in general
they are not).

Suppose further that they all have a simple Gaussian distribution
around their expected losses and that the expected losses are all
identical

e How is L, (W) = min; { Lp(w;) } distributed in this case?



Empirical/expected loss cont’d

e How is min; { L,(w;) } distributed in the simple case where each

1 n
Ln(wk) — ; Z LOSS(yi,f(Xi,Wk)),
1=1

IS @ zero mean Gaussian?

0.9 ‘ .

Pmin(z) o< p(Ln(w;) = z) ]| P(Ln(w;) > 2)
JF



Empirical/expected loss cont’d

e [ he parameters w are often continuous valued... what is m?7?

1 n

Ln(w1) = - 3 Loss(yi, £(xisw1)
=1
1 n

Ln(Wm) — E Z LOSS(yi7f(Xi7WTTL))
1=1

Parameter choices within the region lead
to almost identical losses

Parameters W

e Effectively we only have a discrete number of parameter choices



Regularization

e T he purpose of regularization is to improve generalization

1.

2.

Regularization limits the effective number of parameter choices
= empirical loss of w close to the expected loss
We can also use regularization to incorporate prior knowledge

e Regularization comes in many flavors:

1.
2.
3.

Keep parameter values small (avoid overly strong predictions)
Complexity penalties (e.g., for linear/quadratic)
Feature/component/subset selection

etc.



Regularization: example

e LoOgistic regression model again

P(y =1|x,w) = g(wp + wiz1 + ... + wgzy)
e Maximum penalized likelihood (i.e., with regularization):

mn
C
In(w; C) = 3 109 P(yilxi, w) = _||wl?
i=1
where larger values of C impose stronger regularization.

e How are we limiting our choices here?

1
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e How can we set C7



Regularization and prior probability

e Let's assign a simple Gaussian prior probability over the parame-
ters w in the logistic regression model

P(w) = N(w; u,a?1)

and maximize the log-probability of the observed data and the
parameters

n
Jn(w; C) = > log P(y;|x;,w) + log P(w)
]
’ln 1 2
= ) log P(y;|x;, w) — = |[|w||“ 4+ const
i—1 D2

This is the same as before so long as we define C = 1/057



Modified stochastic gradient ascent

e Overall objective:

n
C
In(w; C) = 3 log P(yifxi, w) = [[w]®
1=1
n C
= ) [Iog P(yilx;, w) —2—||W||2]
i=1 n

e FOor a reqgularized logistic regression model we still get simple on-
line parameter updates

0 C
W o— WH+e— [Iog P(y;|x;, W) ——||WH2]
oW 2n

= (1_§)W+6\(yi_P(yi:1|X7J>W)> [1 ]

| X4

prediction error



