6.867 Machine learning and neural networks

Tommi Jaakkola MIT AI Lab tommi@ai.mit.edu

Lecture 6: text classification, feature selection

Topics

- Text classification example
 - model specification
 - model estimation with regularization
- Feature selection
 - filter methods
 - wrapper methods

Example problem

- Text classification (information retrieval)
 - a large number of documents ${\bf x}$ in a database
 - only a few labeled documents $\{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)\}$
- We wish to build a classifier on the basis of the few labeled training examples (documents).
 - we assume that the labels are binary (1/0)
- Several steps:
 - 1. Feature transformation (why?)
 - 2. Model/classifier specification
 - 3. Model/classifier estimation with regularization

Feature transformation

- The presence/absence of specific words in a document carries information about what the document is about
- We can construct m (about 10,000) indicator features $\{\phi_k(\mathbf{x})\}$ for whether a word appears in the document

 $\phi_k(\mathbf{x}) = 1$, if word k appears in document \mathbf{x} ; zero otherwise

 $\Phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x})]^T$ is the resulting feature vector

• Are there better features?

Model specification: "Naive Bayes" model

- We can treat each word detector $\phi_i(\mathbf{x})$ as an independent expert
- We combine these "expert opinions" by modeling their decisions given the labels:

$$P(\Phi(\mathbf{x})|y,\theta) = \left[\prod_{k=1}^{m} P(\phi_k(\mathbf{x})|y,\theta_k)\right]$$

where $P(\phi_k(\mathbf{x})|y,\theta_k)$ is the conditional probability that the k^{th} word appears in a document labeled y. θ_k are the parameters associated with this conditional probability.

• Classification via Bayes rule:

$$P(y|\Phi(\mathbf{x}),\theta) = \frac{P(\Phi(\mathbf{x})|y,\theta)P(y)}{\sum_{y'=0,1} P(\Phi(\mathbf{x})|y',\theta)P(y')}$$

Naive Bayes estimation

• We can write the conditional probabilities of a single feature as

$$P(\phi_k(\mathbf{x})|y,\theta_k) = \theta_{k|y}^{\phi_k(\mathbf{x})} (1 - \theta_{k|y})^{1 - \phi_k(\mathbf{x})}$$

where $\theta_{k|y}$ is the probability that the word k appears in a document labeled y and $\theta_k = \{\theta_{k|1}, \theta_{k|0}\}.$

• Maximum likelihood estimation (here for a single feature)

$$J_n(\theta_k) = \sum_{i=1}^n \log P(\phi_k(\mathbf{x}_i)|y_i, \theta_k)$$

=
$$\sum_{i=1}^n \left[\phi_k(\mathbf{x}_i) \log(\theta_{k|y_i}) + (1 - \phi_k(\mathbf{x}_i)) \log(1 - \theta_{k|y_i}) \right]$$

=
$$\sum_{y=0,1} \left[N_{ky} \log(\theta_{k|y}) + (N_y - N_{ky}) \log(1 - \theta_{k|y}) \right]$$

 $N_{ky} = \#$ of documents containing word k and labeled y $N_y = \#$ of documents with label y

Naive Bayes estimation cont'd

• We get closed form maximum likelihood estimates

$$J_{n}(\theta_{k}) = \sum_{y=0,1} \left[N_{ky} \log(\theta_{k|y}) + (N_{y} - N_{ky}) \log(1 - \theta_{k|y}) \right]$$

$$\frac{\partial}{\partial \theta_{k|y}} J_{n}(\theta_{k}) = \frac{N_{ky}}{\theta_{k|y}} - \frac{N_{y} - N_{ky}}{1 - \theta_{k|y}} = 0$$

$$\hat{\theta}_{k|y} = \frac{N_{ky}}{N_{y}}$$

(interpretation?)

- **BUT**: we have very few documents and some words are rare; these estimates are unlikely to be good
- We need regularization but what prior should we use?

Prior over the parameters

- Suppose we are dealing with simple coin flips (0/1), where parameter θ determines the probability of "1".
- We can construct a prior over $\boldsymbol{\theta}$ on the basis of
 - 1. a default parameter choice p (in the absence of any data)
 - 2. how much we believe in the default choice (parameter n')

• Such a prior is known as the *beta distribution*:

$$P(heta) ~\propto~ heta^{n'p} \, (1- heta)^{n'(1-p)}$$

Regularized Naive Bayes estimation

• In a maximum *penalized* likelihood estimation with Beta prior

$$P(heta_{k|y}) \propto heta_{k|y}^{n'p} (1 - heta_{k|y})^{n'(1-p)}$$

for both $\theta_{k|y}, y = \mathbf{0}, \mathbf{1},$ we maximize

$$J_{n}(\theta_{k}) = \sum_{y=0,1} \left[N_{ky} \log(\theta_{k|y}) + (N_{y} - N_{ky}) \log(1 - \theta_{k|y}) \right] \\ + \sum_{y=0,1} \log P(\theta_{k|y}) \\ = \sum_{y=0,1} \left[N_{ky} \log(\theta_{k|y}) + (N_{y} - N_{ky}) \log(1 - \theta_{k|y}) \right] \\ + \sum_{y=0,1} \left[n'p \log(\theta_{k|y}) + n'(1 - p) \log(1 - \theta_{k|y}) \right]$$

• The resulting parameter estimates are

$$\widehat{\theta}_{k|y} = \frac{N_{ky} + n'p}{N_y + n'}$$

Interpretation?

Feature selection

- Various objectives
 - Noise reduction
 - Regularization
 - Relevance detection
 - Reduction of computational effort
- There are roughly two main types of feature selection methods
 - 1. Filter method
 - 2. Wrapper method
- We can also do feature *weighting* rather than *selection*

We'll often have to resort to approximations...

Feature selection: example

• Our goal here is to reduce the number of useless word detectors

 $\phi_k = 0, 1$ whether k^{th} word is present in a document

$$y = 0, 1$$
 document label

- Suppose we have $\hat{P}(\phi_k|y)$, $\hat{P}(y)$, and $\hat{P}(\phi_k) = \sum_{y=0,1} \hat{P}(\phi_k|y) \hat{P}(y)$, which we get from our (regularized) parameter estimation algorithm
- We should pick only features that provide substantial information about the labels, i.e., those with high *mutual information* with the labels:

$$I(\phi_k; y) = \sum_{\phi_k=0,1} \sum_{y=0,1} \hat{P}(\phi_k, y) \log_2 \left[\frac{\hat{P}(\phi_k, y)}{\hat{P}(\phi_k) \hat{P}(y)} \right]$$

Background

• Entropy (uncertainty) of a binary random variable y

Why Shannon entropy? 10101101010001110110100011010101...

Background cont'd

• Properties of mutual information:

$$I(\phi_k; y) = \sum_{\phi_k=0,1} \sum_{y=0,1} P(\phi_k, y) \log_2 \frac{P(\phi_k, y)}{P(\phi_k)P(y)}$$

1.
$$I(\phi_k; y) = I(y; \phi_k)$$
 (symmetry)
2. If ϕ_k and y are independent, $I(\phi_k; y) = 0$
3. $I(\phi_k; y) \le H(y)$, $I(\phi_k; y) \le H(\phi_k)$
4. $I(\phi_k; y) = H(y) - H(y|\phi_k) = H(\phi_k) - H(\phi_k|y)$

where the conditional entropy $H(y|\phi_k)$ is defined as

$$H(y|\phi_k) = \sum_{\phi_k=0,1} P(\phi_k) \left[-\sum_{y=0,1} P(y|\phi_k) \log_2 P(y|\phi_k) \right]$$

Background cont'd

• Venn diagram

 $I(\phi_k; y) = H(y) - H(y|\phi_k) = H(\phi_k) - H(\phi_k|y)$

Feature selection: example

• Reducing the number of useless word detectors

$$\phi_k = 0, 1$$
 whether k^{th} word is present in a document $y = 0, 1$ document label

• We pick only features that provide substantial information about the labels, i.e., those with high *mutual information* with the labels:

$$I(\phi_k; y) = \sum_{\phi_k=0,1} \sum_{y=0,1} \widehat{P}(\phi_k, y) \log_2 \left[\frac{\widehat{P}(\phi_k, y)}{\widehat{P}(\phi_k) \widehat{P}(y)} \right]$$

• What approximations are we making here?

A bit more general view

- A filtering approach
 - is generic, i.e., not optimized for any specific classifier
 - may sacrifice classification accuracy
 - modular
- A wrapper approach
 - is always tailored to a specific classifier
 - may lead to better accuracy as a result