6.867 Machine learning and neural networks

Tommi Jaakkola MIT AI Lab

tommi@ai.mit.edu

Lecture 7: feature selection, combination of methods

Topics

- Feature selection
 - filter methods
 - wrapper methods
- Combination of methods
 - greedy sequential fitting
 - voting methods: bagging, boosting

A bit more general view

- A filtering approach
 - is generic, i.e., not optimized for any specific classifier
 - may sacrifice classification accuracy
 - modular
- A wrapper approach
 - is always tailored to a specific classifier
 - may lead to better accuracy as a result

Example: feature pruning

- The goal here is to remove non-informative features
- Definitions:
 - 1. $\{\phi_1(\mathbf{x}), \ldots, \phi_m(\mathbf{x})\}$ is the set of possible word detectors,
 - 2. $\Phi(\mathbf{x}) = [\phi_{i_1}(\mathbf{x}), \dots, \phi_{i_{m'}}(\mathbf{x})]^T$ is our current feature vector (current set of word detectors),
 - 3. $\Phi^{-i}(\mathbf{x})$ is the current feature vector without $\phi_i(\mathbf{x})$ component
- \bullet We'd like to remove any uninformative word detectors from the current feature vector $\Phi(\mathbf{x})$

What is "uninformative"?

Feature pruning cont'd

• A word detector $\phi_{i_k}(\mathbf{x})$ is uninformative if it doesn't help predict the label, i.e., if

 $\hat{P}(y|\Phi^{-i_k}(\mathbf{x})) \approx \hat{P}(y|\Phi(\mathbf{x}))$

for all labels y = 0, 1 and documents x.

• If the probabilities here are estimated using a specific classifier such as Naive Bayes, then this is a wrapper approach. Otherwise we are dealing with a filtering method.

Feature pruning with Naive Bayes (wrapper)

• A word detector $\phi_{i_k}(\mathbf{x})$ is uninformative if it doesn't help predict the label, i.e., if

$$P(y|\Phi^{-i_k}(\mathbf{x}),\hat{\theta}) \approx P(y|\Phi(\mathbf{x}),\hat{\theta})$$

for all labels y = 0, 1 and documents x.

• These probabilities are now computed from the Naive Bayes model:

$$P(\Phi(\mathbf{x})|y,\hat{\theta}) = \prod_{j=1}^{m'} P(\phi_{i_j}(\mathbf{x})|y,\hat{\theta}_k)$$
$$P(y|\Phi(\mathbf{x}),\hat{\theta}) = \frac{P(\Phi(\mathbf{x})|y,\hat{\theta})\hat{P}(y)}{\sum_{y'=0,1} P(\Phi(\mathbf{x})|y',\hat{\theta})\hat{P}(y')}$$

for each document \mathbf{x} .

• Note that the "expert" models $P(\phi_i(\mathbf{x})|y, \hat{\theta}_k)$ need not be recomputed during the feature search.

Another Wrapper approach

• Let's look at the document classification task again, now with a logistic regression model

We have m possible binary word detectors $\{\phi_1(\mathbf{x}), \ldots, \phi_m(\mathbf{x})\}$ and

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x}))$$

when all features are included.

- We'd like to find a small subset of features that lead to good classification
- We can
 - 1. Greedily add features
 - 2. Find relevant features using regularization

Greedy selection of features

1. Find k for which

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_k \phi_k(\mathbf{x}))$$

yields the best classifier

2. Find k' for which

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_k \phi_k(\mathbf{x}) + w_{k'} \phi_{k'}(\mathbf{x}))$$

yields the best classifier. w_0 , w_k and $w_{k'}$ are all reoptimized in the context of each k' that we try to add

3. ...

• When/how do we stop?

Wrapper example: regularization

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x}))$$

• We can introduce a regularization penalty that tries to set the weights to zero unless they are "useful"

$$J(\mathbf{w}; C) = \sum_{t=1}^{n} \log P(y_t | \mathbf{x}_t, \mathbf{w}) - C \sum_{i=1}^{m} |w_i|$$

where $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ is our training set. Note that w_0 is not penalized.

- The selection of non-zero weights here is carried out *jointly*, not individually
- Why should this regularization penalty work at all?

Wrapper example: regularization cont'd

• The effect of the regularization penalty on feature selection depends on its derivative at $w \approx 0$

$$J(\mathbf{w}; C) = \sum_{t=1}^{n} \log P(y_t | \mathbf{x}_t, \mathbf{w}) - C \sum_{i=1}^{m} |w_i|$$

• How are we dealing with redundant features?

Topics

- Combining multiple methods
 - greedy sequential fitting
 - voting methods: bagging, boosting

Combination of multiple methods

- Why would we want to generate and combine multiple methods rather than use a single method?
 - decompositon into simpler subproblems, modularity
 - multiple "weak" methods can be combined into a single "strong" method
 - robustness
- We have to
 - estimate the component methods in a modular way
 - find an appropriate combination rule
 - worry about generalization

Combination of regression methods

- We want to combine multiple "weak" regression methods into a single "strong" method
- Suppose we are given a training set $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ and a family simple regression methods (components) such as

$$f(\mathbf{x}; \theta) = w \,\phi_k(\mathbf{x})$$

where $\theta = \{k, w\}$ (the parameters specify a single basis function as well as the associated weight)

• Basic forward fitting idea: sequentially fit new components to the *residuals*

Step 1:
$$\hat{\theta}_1 \leftarrow \arg\min_{\theta} \sum_{i=1}^n (y_i - f(\mathbf{x}_i; \theta))^2$$

Step 2: $\hat{\theta}_2 \leftarrow \arg\min_{\theta} \sum_{i=1}^n (\underbrace{y_i - f(\mathbf{x}_i; \hat{\theta}_1)}_{\text{residual}} - f(\mathbf{x}_i; \theta))^2$
Step 3: ...

Forward fitting cont'd

Simple family: $f(\mathbf{x}; \theta) = w\phi_k(\mathbf{x}), \ \theta = \{k, w\}$

$$\begin{array}{ll} \text{Step 1:} & \widehat{\theta}_1 \leftarrow \arg\min_{\theta} \sum_{i=1}^n (y_i - f(\mathbf{x}_i; \theta))^2 \\ \text{Step 2:} & \widehat{\theta}_2 \leftarrow \arg\min_{\theta} \sum_{i=1}^n (\underbrace{y_i - f(\mathbf{x}_i; \widehat{\theta}_1)}_{\text{residual}} - f(\mathbf{x}_i; \theta))^2 \\ \text{Step 3:} & \dots \end{array}$$

• The resulting combined regression method

$$\widehat{f}(\mathbf{x}) = f(\mathbf{x}; \widehat{\theta}_1) + \ldots + f(\mathbf{x}; \widehat{\theta}_m)$$

has much lower (training) error.

• How many components? Reuse?

Combination of classifiers

Suppose we are given a training set D = {(x₁, y₁), ..., (x_n, y_n)} of examples and (±1) labels and a family of component classifiers such as *decision stumps*:

$$h(\mathbf{x}; \theta) = \operatorname{sign}(w_1 x_k - w_0)$$

where $\theta = \{k, w_1, w_0\}.$

Each decision stump pays attention to only a single component of the input vector

Bagging

- We can combine classifiers to ensure more *robust* predictions (classifications)
- Given a set of n training examples and labels, repeat
 - 1. resample (with replacement) a smaller training set of n' < n examples
 - 2. train a new classifier (decision stump) $h(\mathbf{x}; \hat{\theta})$ based on the smaller training set
- The resulting combined classifier is obtained by *voting*

$$\hat{h}(\mathbf{x}) = \operatorname{sign}\left(\frac{1}{m}\sum_{k=1}^{m}h(\mathbf{x};\hat{\theta}_{k})\right)$$

Beyond Bagging: reweighting training examples

- The component classifiers should concentrate more on training examples that are difficult to classify correctly
- We can tune the classifiers towards harder examples by reweighting the training examples (small margin \Rightarrow large weight)

Example: suppose we already have $h(\mathbf{x}; \hat{\theta}_1), \ldots, h(\mathbf{x}; \hat{\theta}_m)$. We train the next component classifier $h(\mathbf{x}; \theta_{m+1})$ on a reweighted training set

Weight
$$p(i)$$
 on (\mathbf{x}_i, y_i) : $p(i) \propto \exp\left\{-\sum_{k=1}^{m} h(\mathbf{x}_i; \hat{\theta}_k)\right\}$

where examples with small or negative classification margins (difficult examples) will have larger weights

Boosting

- A Boosting algorithm sequentially estimates and combines classifiers by reweighting training sets (concentrating on the harder examples)
 - each component classifiers is presented with a slightly different problem
- AdaBoost preliminaries:
 - a) Training set $(x_1, y_1), \ldots, (x_n, y_n)$ with binary ± 1 labels y_i .
 - b) A set of "weak" binary (±1) classifiers $h(\mathbf{x}; \theta)$ such as *decision* stumps

$$h(\mathbf{x}; \theta) = \operatorname{sign}(w_1 x_k - w_0)$$

where $\theta = \{k, w_1, w_0\}.$

c) Initially all weights are equal: p(i) = 1/n.