
6.867 Machine learning and neural networks

Tommi Jaakkola

MIT AI Lab

tommi@ai.mit.edu

Lecture 7: feature selection, combination of methods

Topics

• Feature selection

– filter methods

– wrapper methods

• Combination of methods

– greedy sequential fitting

– voting methods: bagging, boosting

A bit more general view

• A filtering approach

– is generic, i.e., not optimized for any specific classifier

– may sacrifice classification accuracy

– modular

• A wrapper approach

– is always tailored to a specific classifier

– may lead to better accuracy as a result

Example: feature pruning

• The goal here is to remove non-informative features

• Definitions:

1. {φ1(x), . . . , φm(x)} is the set of possible word detectors,

2. Φ(x) = [φi1(x), . . . , φim′(x)]T is our current feature vector (cur-

rent set of word detectors),

3. Φ−i(x) is the current feature vector without φi(x) component

• We’d like to remove any uninformative word detectors from the

current feature vector Φ(x)

What is “uninformative”?

Feature pruning cont’d

• A word detector φik(x) is uninformative if it doesn’t help predict

the label, i.e., if

P̂ (y|Φ−ik(x)) ≈ P̂ (y|Φ(x))

for all labels y = 0,1 and documents x.

• If the probabilities here are estimated using a specific classifier

such as Naive Bayes, then this is a wrapper approach. Otherwise

we are dealing with a filtering method.

Feature pruning with Naive Bayes (wrapper)

• A word detector φik(x) is uninformative if it doesn’t help predict

the label, i.e., if

P (y|Φ−ik(x), θ̂) ≈ P (y|Φ(x), θ̂)

for all labels y = 0,1 and documents x.

• These probabilities are now computed from the Naive Bayes

model:

P (Φ(x)|y, θ̂) =
m′∏
j=1

P (φij(x)|y, θ̂k)

P (y|Φ(x), θ̂) =
P (Φ(x)|y, θ̂)P̂ (y)∑

y′=0,1 P (Φ(x)|y′, θ̂)P̂ (y′)

for each document x.

• Note that the “expert” models P (φi(x)|y, θ̂k) need not be recom-

puted during the feature search.

Another Wrapper approach

• Let’s look at the document classification task again, now with a

logistic regression model

We have m possible binary word detectors {φ1(x), . . . , φm(x)} and

P (y = 1|x,w) = g(w0 + w1φ1(x) + . . .+ wmφm(x))

when all features are included.

• We’d like to find a small subset of features that lead to good

classification

• We can

1. Greedily add features

2. Find relevant features using regularization

Greedy selection of features

1. Find k for which

P (y = 1|x,w) = g(w0 + wkφk(x))

yields the best classifier

2. Find k′ for which

P (y = 1|x,w) = g(w0 + wkφk(x) + wk′φk′(x))

yields the best classifier. w0, wk and wk′ are all reoptimized in

the context of each k′ that we try to add

3. ...

• When/how do we stop?

Wrapper example: regularization

P (y = 1|x,w) = g(w0 + w1φ1(x) + . . .+ wmφm(x))

• We can introduce a regularization penalty that tries to set the

weights to zero unless they are “useful”

J(w;C) =
n∑
t=1

logP (yt|xt,w)− C
m∑
i=1

|wi|

where {(x1, y1), . . . , (xn, yn)} is our training set. Note that w0 is

not penalized.

• The selection of non-zero weights here is carried out jointly, not

individually

• Why should this regularization penalty work at all?

Wrapper example: regularization cont’d

• The effect of the regularization penalty on feature selection de-

pends on its derivative at w ≈ 0

−2 −1 0 1 2
0

0.5

1

1.5

2

w2/2 versus |w|

J(w;C) =
n∑
t=1

logP (yt|xt,w)− C
m∑
i=1

|wi|

• How are we dealing with redundant features?

Topics

• Combining multiple methods

– greedy sequential fitting

– voting methods: bagging, boosting

Combination of multiple methods

• Why would we want to generate and combine multiple methods

rather than use a single method?

– decompositon into simpler subproblems, modularity

– multiple “weak” methods can be combined into a single “strong”

method

– robustness

• We have to

– estimate the component methods in a modular way

– find an appropriate combination rule

– worry about generalization

Combination of regression methods

• We want to combine multiple “weak” regression methods into a

single “strong” method

• Suppose we are given a training set D = {(x1, y1), . . . , (xn, yn)}
and a family simple regression methods (components) such as

f(x; θ) = wφk(x)

where θ = {k,w} (the parameters specify a single basis function

as well as the associated weight)

• Basic forward fitting idea: sequentially fit new components to

the residuals

Step 1: θ̂1 ← argmin
θ

n∑
i=1

(yi − f(xi; θ))2

Step 2: θ̂2 ← argmin
θ

n∑
i=1

(yi − f(xi; θ̂1)︸ ︷︷ ︸
residual

−f(xi; θ))2

Step 3: . . .

Forward fitting cont’d

Simple family: f(x; θ) = wφk(x), θ = {k,w}

Step 1: θ̂1 ← argmin
θ

n∑
i=1

(yi − f(xi; θ))2

Step 2: θ̂2 ← argmin
θ

n∑
i=1

(yi − f(xi; θ̂1)︸ ︷︷ ︸
residual

−f(xi; θ))2

Step 3: . . .

• The resulting combined regression method

f̂(x) = f(x; θ̂1) + . . .+ f(x; θ̂m)

has much lower (training) error.

• How many components? Reuse?

Combination of classifiers

• Suppose we are given a training set D = {(x1, y1), . . . , (xn, yn)} of
examples and (±1) labels and a family of component classifiers
such as decision stumps:

h(x; θ) = sign(w1 xk − w0)

where θ = {k,w1, w0}.
Each decision stump pays attention to only a single component
of the input vector

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

1.5

Bagging

• We can combine classifiers to ensure more robust predictions

(classifications)

• Given a set of n training examples and labels, repeat

1. resample (with replacement) a smaller training set of n′ < n

examples

2. train a new classifier (decision stump) h(x; θ̂) based on the

smaller training set

• The resulting combined classifier is obtained by voting

ĥ(x) = sign

 1

m

m∑
k=1

h(x; θ̂k)



−1 0 1
x

margin

Beyond Bagging: reweighting training examples

• The component classifiers should concentrate more on training

examples that are difficult to classify correctly

• We can tune the classifiers towards harder examples by reweight-

ing the training examples (small margin ⇒ large weight)

Example: suppose we already have h(x; θ̂1), . . . , h(x; θ̂m). We

train the next component classifier h(x; θm+1) on a reweighted

training set

Weight p(i) on (xi, yi): p(i) ∝ exp
{
−

margin︷ ︸︸ ︷
yi

m∑
k=1

h(xi; θ̂k)
}

where examples with small or negative classification margins (dif-

ficult examples) will have larger weights

Boosting

• A Boosting algorithm sequentially estimates and combines clas-

sifiers by reweighting training sets (concentrating on the harder

examples)

– each component classifiers is presented with a slightly different

problem

• AdaBoost preliminaries:

a) Training set (x1, y1), . . . , (xn, yn) with binary ±1 labels yi.

b) A set of “weak” binary (±1) classifiers h(x; θ) such as decision

stumps

h(x; θ) = sign(w1 xk − w0)

where θ = {k,w1, w0}.
c) Initially all weights are equal: p(i) = 1/n.

