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LLecture 7: feature selection, combination of methods



Topics

e Feature selection
— filter methods
— wrapper methods

e Combination of methods
— greedy sequential fitting
— voting methods: bagging, boosting



A bit more general view

e A filtering approach
— IS generic, i.e., not optimized for any specific classifier
— may sacrifice classification accuracy
— modular

e A wrapper approach
— is always tailored to a specific classifier
— may lead to better accuracy as a result



Example: feature pruning

e T he goal here is to remove non-informative features

e Definitions:
1. {p1(x),...,om(x)} is the set of possible word detectors,
2. d(x) = [¢;;(x),..., Cbz'm,(X)]T is our current feature vector (cur-
rent set of word detectors),
3. ®%(x) is the current feature vector without ¢;(x) component

e \We'd like to remove any uninformative word detectors from the
current feature vector o (x)

What is “uninformative’” 7



Feature pruning cont’d

e A word detector ¢;, (x) is uninformative if it doesn’t help predict
the label, i.e., if

P(y|d™"(x)) ~ P(y|P(x))

for all labels y = 0,1 and documents x.

e If the probabilities here are estimated using a specific classifier
such as Naive Bayes, then this is a wrapper approach. Otherwise
we are dealing with a filtering method.



Feature pruning with Naive Bayes (wrapper)

e A word detector ¢;, (x) is uninformative if it doesn’t help predict
the label, i.e., if
P(y|®~"*(x),0) ~ P(y|P(x),0)
for all labels y = 0,1 and documents x.

e [ hese probabilities are now computed from the Naive Bayes
model:

P(®(x)]y,0) [I P(oi,()ly, 0k)
j=1

P(®(x)|y,0)P(y)
Zy’zo,l P(¢(X)|y,7§)p(y,>

P(yl®(x),0) =

for each document x.

e Note that the “expert” models P(¢;(x)|y,0;) need not be recom-
puted during the feature search.



Another Wrapper approach

Let's look at the document classification task again, now with a
logistic regression model

We have m possible binary word detectors {¢1(x),...,om(x)} and

P(ly=1lx,w) = g(wo + w1¢1(x) + ... + wmdm(x) )
when all features are included.

We'd like to find a small subset of features that lead to good
classification

We can
1. Greedily add features
2. Find relevant features using regularization



Greedy selection of features

1. Find k for which

Py =1|x,w) = g(wo + wr¢r(x))
vields the best classifier
2. Find k' for which

P(y = 1|x,w) = g(wo + wi¢p(x) + wpdp(x) )
yields the best classifier. wg, wg and w, are all reoptimized in

the context of each kK’ that we try to add

3. ...

e When/how do we stop?



Wrapper example: regularization

P(y = 1|x,w) = g(wo + w1¢1(x) + ... + wmodm(x))

e \We can introduce a regularization penalty that tries to set the
weights to zero unless they are ‘“‘useful”

n m
J(w;C) = > log P(yi|x¢, w) —C ) |wj]
t=1 i=1

where {(x1,y1),---,(Xn,yn)} is our training set. Note that wq is
not penalized.

e [ he selection of non-zero weights here is carried out jointly, not
individually

e \Why should this regularization penalty work at all?



Wrapper example: regularization cont’d

e [ he effect of the regularization penalty on feature selection de-
pends on its derivative at w0
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mn m
J(w;C) = > log P(yi|x¢, w) — C > |wy

e How are we dealing with redundant features?



Topics

e Combining multiple methods
— greedy sequential fitting
— voting methods: bagging, boosting



Combination of multiple methods

e \WWhy would we want to generate and combine multiple methods
rather than use a single method?

— decompositon into simpler subproblems, modularity

— multiple “weak” methods can be combined into a single *strong”
method

— robustness

e \\We have to
— estimate the component methods in a modular way

— find an appropriate combination rule
— worry about generalization



Combination of regression methods

e We want to combine multiple “weak’” regression methods into a
single ‘'strong” method

e Suppose we are given a training set D = {(x1,9¥1),---, Xn,yn)}
and a family simple regression methods (components) such as

f(x;0) = w¢p(x)

where 0 = {k,w} (the parameters specify a single basis function
as well as the associated weight)

e Basic forward fitting idea: sequentially fit new components to
the residuals

mn
Step 1:  f1 «—argmin 3~ (y; — f(x:;0))°
1=1

n
Step 2: 0y « arg min S (g — f(x401) — f (x5 0))?
=1 residual

Step 3:



Forward fitting cont’d

Simple family: f(x;0) = w¢r(x), 0 = {k,w}

mn
Step 1: 01 —argmin 3 (y; — f(x;;0))°
1=1

n
Step 2: 65 « arg min S (i = f(x4;01) — F (x4 0))°
=1 residual

Step 3:

e [ he resulting combined regression method
F(x) = f(x;01) + ...+ f(x;0m)
has much lower (training) error.

e HoOw many components? Reuse?



Combination of classifiers

e Suppose we are given a training set D = {(x1,v1),--., (Xn,yn)} Of
examples and (£1) labels and a family of component classifiers
such as decision stumps:

h(x;0) = sign( w1z — wo )

where 0 = {k, w1, wq}.

Each decision stump pays attention to only a single component
of the input vector
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Bagging

e \We can combine classifiers to ensure more robust predictions
(classifications)

e Given a set of n training examples and labels, repeat

1. resample (with replacement) a smaller training set of n’ < n
examples

2. train a new classifier (decision stump) h(x;8) based on the
smaller training set

e [ he resulting combined classifier is obtained by voting
~ 1 ~
h(x) =sign | — > h(x;0;)
m—1

margin
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Beyond Bagging: reweighting training examples

e T he component classifiers should concentrate more on training
examples that are difficult to classify correctly

e \We can tune the classifiers towards harder examples by reweight-
ing the training examples (small margin = large weight)

Example: suppose we already have h(x;01),...,h(x;0,). We
train the next component classifier h(x;0,,4+1) on a reweighted
training set

margin

— .
Weight p(i) on (x;,:): p() o exp{ —y; > h(x;i6;) }
k=1

where examples with small or negative classification margins (dif-
ficult examples) will have larger weights



Boosting

e A Boosting algorithm sequentially estimates and combines clas-
sifiers by reweighting training sets (concentrating on the harder
examples)

— each component classifiers is presented with a slightly different
problem

e AdaBoost preliminaries:
a) Training set (x1,v1),...,(Xn,yn) with binary +1 labels y;.
b) A set of “weak” binary (£1) classifiers h(x; 6) such as decision
stumps

h(x;0) = sign(wq xp — wo )

where 6 = {k,wl,wo}.
c) Initially all weights are equal: p(i) = 1/n.



