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Lecture 8: boosting, support vector machines



Topics

e Combination of methods
— voting methods: bagging and boosting
— margin and generalization

e Support vector machines
— “optimal” hyperplane



Combination of classifiers

e Suppose we are given a training set D = {(x1,v1),--., (Xn,yn)} Of
examples and (£1) labels and a family of component classifiers
such as decision stumps:

h(x;0) = sign( w1z — wo )

where 0 = {k, w1, wq}.

Each decision stump pays attention to only a single component
of the input vector
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Bagging

e \We can combine classifiers to ensure more robust predictions
(classifications)

e Given a set of n training examples and labels, repeat

1. resample (with replacement) a smaller training set of n’ < n
examples

2. train a new classifier (decision stump) h(x;8) based on the
smaller training set

e [ he resulting combined classifier is obtained by voting
~ 1 ~
h(x) =sign | — > h(x;0;)
m—1
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Beyond Bagging: reweighting training examples

e T he component classifiers should concentrate more on training
examples that are difficult to classify correctly

e \We can tune the classifiers towards harder examples by reweight-
ing the training examples (small margin = large weight)

Example: suppose we already have h(x;01),...,h(x;0,). We
train the next component classifier h(x;0,,4+1) on a reweighted
training set

margin

— .
Weight p(i) on (x;,:): p() o exp{ —y; > h(x;i6;) }
k=1

where examples with small or negative classification margins (dif-
ficult examples) will have larger weights



Boosting

e A Boosting algorithm sequentially estimates and combines clas-
sifiers by reweighting training sets (concentrating on the harder
examples)

— each component classifiers is presented with a slightly different
problem

e AdaBoost preliminaries:
a) Training set (x1,v1),...,(Xn,yn) with binary +1 labels y;.
b) A set of “weak” binary (£1) classifiers h(x; 6) such as decision
stumps

h(x;0) = sign(wq xp — wo )

where 6 = {k,wl,wo}.
c) Initially all weights are equal: p(i) = 1/n.



The AdaBoost algorithm

1: Find the kth classifier h(x; 6;) such that its weighted training error

o= p) s # h(xi: O]
=1

1=
is better than chance. Here [[y # ¢']] = 1 if the argument y % ¢/
IS true and zero otherwise.

2. Determine how many ‘“votes’ to give to the new component
classifier: a; = 0.5 10og( (1 — €) /€. ) (decorrelation)

3: Update example weights: pg11(:) = pg(i) - exp(—ay y; h(x;; 6x) )
and renormalize the new weights to one.

e [ he final classifier after m boosting iterations is given by

a1h(x;01) + ...+ amh(x;0) )
a1 +...+am

h(x) = sign (
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Boosting: example
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Boosting: example cont’d
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Boosting: example cont’d

051

-1

-0.6

0.2

0.4

0.6

0.8

1.2

14

15

-1

-0.6

-0.4

0.4

0.6

0.8



Boosting performance

e Training/test errors for the combined classifier

a1h(x;01) + ...+ amh(x;0) >
a1+ ...+ am

h(x) = sign (
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What about the component classifiers (decision stumps)?

e Even after the training error of the combined classifier goes to
zero, boosting iterations can still improve the generalization error!



Classification margin

(this is only an illustration; margins from boosted decision stumps
would look a bit different)

small margin large margin

e [ he training error is zero in both cases ... why is larger margin
better?



Boosting and margin

e Boosting iterations tend to increase the margin

(&m(x; 01) + ...+ amh(x; 0) )
Y a1+ ...+ am
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cumulative distribution

margin



Topics

e Support vector machines
— “optimal” hyperplane



“Optimal” hyperplane

e Let's assume for simplicity that the classification problem is lin-
early separable

e Maximum margin hyperplane is maximally removed from all the
training examples

e [ his hyperplane can be defined on the basis of only a few training
examples called support vectors



“Optimal” hyperplane cont’d

e Training set (x1,v1),...,(Xn,yn) Where the labels are binary *+1
e Linear separator:

f(x; w,wq) wo + riw1 + ... xqwy

= wqo + wlx

e \We can try to find the “optimal’ hyperplane by requiring that
the sign of the decision boundary [wg+w{x] (clearly) agrees with
the training labels

yilwo+wix]—1>0, i=1,...,n
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Support vector machine

e \WWe minimize

d
Iwl?/2 =wlw/2=3" wf/2
J=1
subject to the classification constraints

yi[wo—l—wTXi]—lzo, 1=1,....n

e Only a few of the classification constraints are relevant
= support vectors



