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Lecture 8: boosting, support vector machines



Topics

• Combination of methods

– voting methods: bagging and boosting

– margin and generalization

• Support vector machines

– “optimal” hyperplane



Combination of classifiers

• Suppose we are given a training set D = {(x1, y1), . . . , (xn, yn)} of
examples and (±1) labels and a family of component classifiers
such as decision stumps:

h(x; θ) = sign(w1 xk − w0 )

where θ = {k,w1, w0}.
Each decision stump pays attention to only a single component
of the input vector
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Bagging

• We can combine classifiers to ensure more robust predictions

(classifications)

• Given a set of n training examples and labels, repeat

1. resample (with replacement) a smaller training set of n′ < n

examples

2. train a new classifier (decision stump) h(x; θ̂) based on the

smaller training set

• The resulting combined classifier is obtained by voting

ĥ(x) = sign

 1

m

m∑
k=1

h(x; θ̂k)


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x

margin



Beyond Bagging: reweighting training examples

• The component classifiers should concentrate more on training

examples that are difficult to classify correctly

• We can tune the classifiers towards harder examples by reweight-

ing the training examples (small margin ⇒ large weight)

Example: suppose we already have h(x; θ̂1), . . . , h(x; θ̂m). We

train the next component classifier h(x; θm+1) on a reweighted

training set

Weight p(i) on (xi, yi): p(i) ∝ exp
{
−

margin︷ ︸︸ ︷
yi

m∑
k=1

h(xi; θ̂k)
}

where examples with small or negative classification margins (dif-

ficult examples) will have larger weights



Boosting

• A Boosting algorithm sequentially estimates and combines clas-

sifiers by reweighting training sets (concentrating on the harder

examples)

– each component classifiers is presented with a slightly different

problem

• AdaBoost preliminaries:

a) Training set (x1, y1), . . . , (xn, yn) with binary ±1 labels yi.

b) A set of “weak” binary (±1) classifiers h(x; θ) such as decision

stumps

h(x; θ) = sign(w1 xk − w0 )

where θ = {k,w1, w0}.
c) Initially all weights are equal: p(i) = 1/n.



The AdaBoost algorithm

1: Find the kth classifier h(x; θ̂k) such that its weighted training error

εk =
n∑
i=1

pk(i) [[yi 6= h(xi; θ̂k)]]

is better than chance. Here [[y 6= y′]] = 1 if the argument y 6= y′

is true and zero otherwise.

2: Determine how many “votes” to give to the new component

classifier: α̂k = 0.5 log( (1− εk)/εk ) (decorrelation)

3: Update example weights: pk+1(i) = pk(i) · exp(−α̂k yi h(xi; θ̂k) )

and renormalize the new weights to one.

• The final classifier after m boosting iterations is given by

ĥ(x) = sign

(
α̂1h(x; θ̂1) + . . .+ α̂mh(x; θ̂m)

α̂1 + . . .+ α̂m

)



Boosting: example
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Boosting: example cont’d
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Boosting: example cont’d
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Boosting performance

• Training/test errors for the combined classifier

ĥ(x) = sign

(
α̂1h(x; θ̂1) + . . .+ α̂mh(x; θ̂m)

α̂1 + . . .+ α̂m

)
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What about the component classifiers (decision stumps)?

• Even after the training error of the combined classifier goes to

zero, boosting iterations can still improve the generalization error!



Classification margin

(this is only an illustration; margins from boosted decision stumps

would look a bit different)
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• The training error is zero in both cases ... why is larger margin

better?



Boosting and margin

• Boosting iterations tend to increase the margin

y

(
α̂1h(x; θ̂1) + . . .+ α̂mh(x; θ̂m)

α̂1 + . . .+ α̂m

)



Topics

• Support vector machines

– “optimal” hyperplane



“Optimal” hyperplane

• Let’s assume for simplicity that the classification problem is lin-

early separable
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• Maximum margin hyperplane is maximally removed from all the

training examples

• This hyperplane can be defined on the basis of only a few training

examples called support vectors



“Optimal” hyperplane cont’d

• Training set (x1, y1), . . . , (xn, yn) where the labels are binary ±1

• Linear separator:

f(x; w, w0) = w0 + x1w1 + . . . xdwd
= w0 + wTx

• We can try to find the “optimal” hyperplane by requiring that
the sign of the decision boundary [w0+wTx] (clearly) agrees with
the training labels

yi [w0 + wTxi]− 1 ≥ 0, i = 1, . . . , n
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Support vector machine

• We minimize

‖w‖2/2 = wTw/2 =
d∑

j=1

w2
i /2

subject to the classification constraints

yi [w0 + wTxi]− 1 ≥ 0, i = 1, . . . , n
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• Only a few of the classification constraints are relevant

⇒ support vectors


