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LLecture 9: support vector machine



Topics

e Support vector machines
— “optimal” hyperplane
— kernel function



“Optimal” hyperplane

e Let's assume for simplicity that the classification problem is lin-
early separable

e Maximum margin hyperplane is maximally removed from all the
training examples

e [ his hyperplane can be defined on the basis of only a few training
examples called support vectors



“Optimal” hyperplane cont’d

e Training set (x1,v1),...,(Xn,yn) Where the labels are binary *+1
e Linear separator:

f(x; w,wq) wo + riw1 + ... xqwy

= wqo + wlx

e \We can try to find the “optimal’ hyperplane by requiring that
the sign of the decision boundary [wg+w{x] (clearly) agrees with
the training labels

yilwo+wix]—1>0, i=1,...,n
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“Optimal” hyperplane cont’d

e One dimensional example: f(z;w1,wq) = wg + wiz.
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Relevant classification con-
straints are

1(wg+wizt)—1>0
—1(wg+wiz™)—1<0

which lead to
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e Maximum margin separation is achieved by minimizing |wq| sub-
ject to the classification constraints



Support vector machine
e \We minimize
d
2 T 2
wl|</2=w'w/2= > wi/2

J=1
subject to the classification constraints

yi[wo—l—wTXi]—lzo, 1=1,....n

e The attained margin is now given by 1/||w||

e Only a few of the classification constraints are relevant
— support vectors



Support vector machine cont’d

e We find the optimal setting of {wg,w} by introducing Lagrange
multipliers a; > 0 for the inequality constraints

e \We minimize
n
J(w,wo, @) = |[w[?/2 = 3 a; (y;lwo+w'x;] — 1)
i=1
with respect to w,wqg. {o;} make sure that the classification
constraints are indeed satisfied.
For fixed {a;}

9 1w, wo, )
OwW

n
W — Z oY X — O
1=1
0
—J(Wa wo, Oé)
owq

n
— ) ay; =0
i=1



Solution

Substituting the solution w = 7", ay;x; back into the objective
leaves us with the following (dual) optimization problem over the
LLagrange multipliers:

We maximize

J(a) = Z o — 2 Z O 5YiY 5 (X Xj)
) ,7=1
subject to the constraints

n
a; >0, 1=1,...,n, Zaiyizo

(For non-separable problems we have to limit o; < C)

This is a quadratic programming problem



Support vector machines

e Once we have the Lagrange multipliers {&;}, we can reconstruct
the parameter vector w as a weighted combination of the training
examples:

mn
W= ) qyiX;
i=1
where the “weight” a; = 0 for all but the support vectors (SV')
e [ he decision boundary has an interpretable form

C S ~ ~ ~ T ~ RPN
FOW,00) = Wix+ a9 = Y &y (x! x) + w9 = f(x; &,w0)
1€SV

(how did we set wp?)



Interpretation of support vector machines

e [0 use support vector machines we have to specify only the inner
products (or kernel) between the examples (x!x)

e The weights {«;} associated with the training examples are solved
by enforcing the classification constraints.

= sparse solution

e \We make decisions by comparing each new example x with only
the support vectors {x;};csv:
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Non-linear classifier

e SO far our classifier can make only linear separations

e \We can easily obtain a non-linear classifier by mapping our ex-
amples x = [x1 x»] into longer feature vectors d(x)

d(x) = [x% LE% V2zxixo V2x1 V225 1]

and applying the linear classifier to the new feature vectors ®(x)
instead



Non-linear classifier

Non-linear separator in the original space



Feature mapping and kernels

e Let's look at the previous example in a bit more detail

x — P(x) = [az% a:% V2zixo V2x1 V2x0 1]

e T he SVM classifier deals only with inner products of examples
(or feature vectors). In this example,

d(x) D(x) = 222? + 2325 + 2zqaoxtah + 2z1ah + a0 + 1
(14 z12] + zoxh)?

2
(1 + (XTX/)>

But these inner products can be evaluated without ever explicitly
constructing the feature vectors ®(x)!

2
o K(x,x') = (1 + (xTx’)> is a kernel function (inner product in the
feature space)



Examples of kernel functions

e Linear kernel
K(x,x') = (x'x')
e Polynomial kernel

K(x,x) = (1 + (XTX/)>p

where p = 2,3,.... To get the feature vectors we concatenate

all pth order polynomial terms of the components of x (weighted
appropriately)

e Radial basis kernel
1
K(x,x) = exp (—[x - x/|12)

In this case the feature space consists of functions and results in
a non-parametric classifier.



SVM examples
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Dimensionality and complexity

e Example: even for small values of p the polynomial kernel

K(x,x) = (1 + (XTX/)>p

corresponds to long feature vectors $(x).

In two dimensions: In three dimensions
degree p # of features degree p # of features
2 6 2 10
3 10 3 20
4 15 4 35
5 21 5 56

(it gets much worse in higher dimensions)

e [ he dimensionality of the feature space does not tell the whole
story



Cross-validation error

e [ he leave-one-out cross-validation error does not depend on the
dimensionality of the feature space but only on the # of support
vectors!

# support vectors

Leave-one-out CV error < —
# of training examples




SVM examples

e Digit recognition example (16x16 grayscale pixel images)

Method

error %
SVM (4" order polynomial) 1.1
LeNet 1 (neural network) 1.7 (hand tuned)
LeNet 4 (neural network) 1.1 (hand tuned)
Tangent distance (template matching) 0.7 (hand tuned)

e Document classification, etc.



