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Lecture 9: support vector machine



Topics

• Support vector machines

– “optimal” hyperplane

– kernel function



“Optimal” hyperplane

• Let’s assume for simplicity that the classification problem is lin-

early separable
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• Maximum margin hyperplane is maximally removed from all the

training examples

• This hyperplane can be defined on the basis of only a few training

examples called support vectors



“Optimal” hyperplane cont’d

• Training set (x1, y1), . . . , (xn, yn) where the labels are binary ±1

• Linear separator:

f(x; w, w0) = w0 + x1w1 + . . . xdwd
= w0 + wTx

• We can try to find the “optimal” hyperplane by requiring that
the sign of the decision boundary [w0+wTx] (clearly) agrees with
the training labels

yi [w0 + wTxi]− 1 ≥ 0, i = 1, . . . , n
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“Optimal” hyperplane cont’d

• One dimensional example: f(x;w1, w0) = w0 + w1x.

Relevant classification con-

straints are{
1 (w0 + w1x

+)− 1 ≥ 0
−1 (w0 + w1x

−)− 1 ≤ 0

which lead to

w1(x+ − x−)− 2 ≥ 0

|x− − x+|/2︸ ︷︷ ︸
max margin

≥
1
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• Maximum margin separation is achieved by minimizing |w1| sub-

ject to the classification constraints



Support vector machine

• We minimize

‖w‖2/2 = wTw/2 =
d∑

j=1

w2
i /2

subject to the classification constraints

yi [w0 + wTxi]− 1 ≥ 0, i = 1, . . . , n
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• The attained margin is now given by 1/‖w‖
• Only a few of the classification constraints are relevant
⇒ support vectors



Support vector machine cont’d

• We find the optimal setting of {w0,w} by introducing Lagrange

multipliers αi ≥ 0 for the inequality constraints

• We minimize

J(w, w0, α) = ‖w‖2/2−
n∑
i=1

αi
(
yi [w0 + wTxi]− 1

)
with respect to w, w0. {αi} make sure that the classification

constraints are indeed satisfied.

For fixed {αi}

∂

∂w
J(w, w0, α) = w −

n∑
i=1

αiyixi = 0

∂

∂w0
J(w, w0, α) = −

n∑
i=1

αiyi = 0



Solution

• Substituting the solution w =
∑n
i=1αiyixi back into the objective

leaves us with the following (dual) optimization problem over the

Lagrange multipliers:

We maximize

J(α) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj(xTi xj)

subject to the constraints

αi ≥ 0, i = 1, . . . , n,
n∑
i=1

αiyi = 0

(For non-separable problems we have to limit αi ≤ C)

• This is a quadratic programming problem



Support vector machines

• Once we have the Lagrange multipliers {α̂i}, we can reconstruct
the parameter vector ŵ as a weighted combination of the training
examples:

ŵ =
n∑
i=1

α̂iyixi

where the “weight” α̂i = 0 for all but the support vectors (SV )

• The decision boundary has an interpretable form

f(x; ŵ, ŵ0) = ŵTx + ŵ0 =
∑
i∈SV

α̂i yi (xTi x) + ŵ0 = f(x; α̂, ŵ0)
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(how did we set ŵ0?)



Interpretation of support vector machines

• To use support vector machines we have to specify only the inner

products (or kernel) between the examples (xTi x)

• The weights {αi} associated with the training examples are solved

by enforcing the classification constraints.

⇒ sparse solution

• We make decisions by comparing each new example x with only

the support vectors {xi}i∈SV :

ŷ = sign

 ∑
i∈SV

α̂i yi (xTi x) + ŵ0





Non-linear classifier

• So far our classifier can make only linear separations

• We can easily obtain a non-linear classifier by mapping our ex-

amples x = [x1 x2] into longer feature vectors Φ(x)

Φ(x) = [x2
1 x2

2

√
2x1x2

√
2x1

√
2x2 1]

and applying the linear classifier to the new feature vectors Φ(x)

instead



Non-linear classifier
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Linear separator in the feature space
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Feature mapping and kernels

• Let’s look at the previous example in a bit more detail

x→ Φ(x) = [x2
1 x2

2

√
2x1x2

√
2x1

√
2x2 1]

• The SVM classifier deals only with inner products of examples

(or feature vectors). In this example,

Φ(x)TΦ(x′) = x2
1x
′2
1 + x2

2x
′2
2 + 2x1x2x

′
1x
′
2 + 2x1x

′
1 + 2x2x

′
2 + 1

= (1 + x1x
′
1 + x2x

′
2)2

=
(
1 + (xTx′)

)2

But these inner products can be evaluated without ever explicitly

constructing the feature vectors Φ(x)!

• K(x,x′) =
(
1 + (xTx′)

)2
is a kernel function (inner product in the

feature space)



Examples of kernel functions

• Linear kernel

K(x,x′) = (xTx′)

• Polynomial kernel

K(x,x′) =
(
1 + (xTx′)

)p
where p = 2,3, . . .. To get the feature vectors we concatenate

all pth order polynomial terms of the components of x (weighted

appropriately)

• Radial basis kernel

K(x,x′) = exp
(
−

1

2
‖x− x′‖2

)
In this case the feature space consists of functions and results in

a non-parametric classifier.



SVM examples
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Dimensionality and complexity

• Example: even for small values of p the polynomial kernel

K(x,x′) =
(
1 + (xTx′)

)p
corresponds to long feature vectors Φ(x).

In two dimensions:

degree p # of features
2 6
3 10
4 15
5 21

In three dimensions

degree p # of features
2 10
3 20
4 35
5 56

(it gets much worse in higher dimensions)

• The dimensionality of the feature space does not tell the whole

story



Cross-validation error
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• The leave-one-out cross-validation error does not depend on the

dimensionality of the feature space but only on the # of support

vectors!

Leave-one-out CV error ≤
# support vectors

# of training examples



SVM examples

• Digit recognition example (16x16 grayscale pixel images)

Method error %

SVM (4th order polynomial) 1.1
LeNet 1 (neural network) 1.7 (hand tuned)
LeNet 4 (neural network) 1.1 (hand tuned)
Tangent distance (template matching) 0.7 (hand tuned)

• Document classification, etc.


