
6.867 Machine Learning

Problem set 1 — Solutions

Thursday, September 19

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). When answering question of the form
What is X or Write down X show how exactly you arrived at the answer, without missing
crucial steps in reasoning. You may turn in answers to questions marked “optional”— they
will be read and corrected, but a grade will not be recorded for them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question. Do not turn in code supplied to you with the problem set.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write your
name on the top of every page.

Please address questions and comments to 6.867-staff@ai.mit.edu.

Problem 1: regression

Reference: Lecture two; Chapter five.

Here we will be using a regression method to predict mileage per gallon (MPG) of gas for
different vehicles. You’ll find the data in the file “mpg.dat”. Information about the data,
including the column interpretation can be found in the file “mpg.names”. These files, like
many other data files in the course, are taken from the UCI Machine Learning Repository
http://www.ics.uci.edu/∼mlearn/MLSummary.html.

First, we will use a linear regression model to predict the MPG values, using squared-
error as the criterion to minimize. In other words y = f(x; ŵ) = ŵ0 +

∑7
i=1 ŵixi,

where ŵ = arg minw

∑n
t=1(yt − f(xt; w))2; here yt is the MPG of a car t, xt is the
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7-component input vector representing the car t, and n is the number of training
examples.

To allow experiments with linear regression, the following Matlab functions have been
provided.

w = train(trainX,trainY)

given the set of training vectors xt, t = 1, . . . , n (rows of trainX) and corresponding
output values yt, t = 1, . . . , n (elements of trainY), returns in w the “optimal” weight
vector ŵ.

Y = predict(X,w)

given a set of input vectors (rows of X) and a weight vector ŵ, returns in elements of
Y output values ŷ predicted for X using ŵ.

[trainE, testE] = trainNtest(trainX,trainY,testX,testY)

given the input and output values in a training set and a test set, trains and evaluates
linear regression model, and returns in trainE and testE the training and test errors,
respectively.

[trainE,testE] = testLinear(x,y,numtrain)

takes as input the complete data set (both input vectors and output values), and the
desired training set size, and returns the mean training and test errors.

To test our linear regression model, we will partition the available data into disjoint
training and test sets. This will be done, for a training set size N , by using the first
N lines in the data file for training, and the remaining lines for testing.

The easiest way to read in the data in Matlab, and

data = load(’mpg.dat’);

x = data(:,1:7);

y = data(:,8);

The training and test errors of linear regression are plotted in Figure 1 as a function
of an increasing size of the training set. Make sure you get the same values.

1. [8pt] How would you expect the graphs on Figure 1 to behave with an unlimited
supply of examples? In this case we estimate the regression model with only a small
training set as before but the size of the test set would be infinite. In your answer
refer to the values of the training and test errors as well as to their behavior with
respect to each other.
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Figure 1: Training / test error of linear regression as a function of training set size

Answer: Note that both the training error and the test error can be viewed
as estimates of the true generalization error. Both are consistent estimates;
as the size of the data increases, their value approaches generalization error.
In this case, the test error will approach that limit. Its value is likely to be
somewhat larger than the training error, since the training error on data set
of fixed (small) size is “optimistic” - the model parameters are optimized to
minimize the training error. If the gap between the test error and the training
error is large we say that the learning algorithm is overfitting.

2. [5pt] In all but very unlikely scenarios the value of the training error on a training
set of size 5 in MPG should not depend on the actual data. Explain why, and write
down that value. Do you get this answer by running testLinear on the training set
of size 5? If no, explain why.

Answer: The linear regression model for MPG has 8 parameters w0, . . . , w7.
Fitting the model to 5 data points can be expressed as the system of 5 linear
equations and 8 unknowns:

y1 = w0 + w1x1,1 + . . .+ w7x1,7
...
y5 = w0 + w1x5,1 + . . .+ w7x5,7

where xi,j denotes the j-th component of the i-th input vector. This system
will usually have an exact solution - in fact, if the points are in general position
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(not collinear), there will be an infinite number of solutions. The training error
corresponding to such a solution is zero.

The “unlikely scenario” to which we refer in the question is the scenario
in which the MPG measurements taken for two (or more) cars with identical
parameters produce different values. In that case, the system above would not
be consistent, and parameters of the linear regression model would result in a
non-zero training error. As we get more training points the system of equations
would typically be “inconsistent” (more equations than unknowns).

In practice, finding the parameters involves a number of calculation steps,
such as finding a matrix pseudo-inverse, that inevitably introduce numerical
error (due to finite precision). Therefore, our Matlab program reports a very
small, but non-zero training error; we got an error of the order 1o−28.

We will now move on to polynomial regression. We will predict the MPG values using
a function of the form:

f(x; w) = w0 +
7∑
i=1

m∑
d=1

wi,dx
d
i ,

where again, the weights w are chosen so as to minimize the mean squared error on
the training set. Think about why we also include all lower order polynomial terms
up to the highest order rather than just the highest ones [do not turn in an answer].

Note that we only use features which are powers of a single input feature. We do so
mostly in order to simplify the problem. In most cases, it is more beneficial to use
features which are products of different input features, and perhaps also their powers.
Think of why such features are usually more powerful [do not turn in an answer].

You can use the provided Matlab function

xx = degexpand(x,m)

that for given set of input vectors x and a degree m returns the set of expanded vectors
(containing all the powers of the original inputs).

You will have to slightly modify testLinear in order to experiment with polynomial
regression. You do not have to turn in the modified code.

NOTE: When the degree is high, some of the features will have extremely high values,
while others will have very low values. This causes severe numeric precision problems
with matrix inversion, and yields wrong answers. To overcome this problem, one
must appropriately scale each feature xdi included in the regression model, to bring
all features to roughly the same magnitude. Our version of degexpand, for instance,
normalizes each feature by the maximum absolute value of that feature.

Of course, this scaling of features can be safely done only if it does not change the
regression predictions. That is, given training feature vectors and output values
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{xt, yt}t=1,...,n and a test input vector xtest, and scaling factors {αi}i=1,...,7, we would
like to make sure that the prediction of the test output value would be the same if
we trained a linear regression on {x̃t, yt}t=1,...,n, where x̃t,i = αixt,i, and predicted
on x̃test, where x̃test,i = αixtest,i. In fact, it is enough to prove this for the linear
model (maximum degree one). The result extends to scaling each “extended” feature
xdi (which is what we actually do), since this is just linear regression using these
“extended” features. Now, let’s assume ŵi is the “optimal” weight corresponding
to the ith feature when we use the original non-scaled inputs. Then, w̃i = ŵi/αi
gives the “optimal” weights for the scaled features since

∑7
i=1 w̃ix̃i =

∑7
i=1 ŵixi. In

other words, we make the same predictions in both cases. More generally, since x̃
is an (invertible) linear function of x, the set A of linear function of x is exactly
equal to the set Ã of linear functions of x̃. Therefore, the optimal predictor for
the original problem, argminw∈A(training error) is exactly the same as the optimal
predictor argminw∈Ã(training error) for the scaled problem.

Advice: In order to understand the expansion that degexpand, apply it on a small data set, for
example, on

x=[1, 2, 3;
2, 0.5, 1.5;
0, 1, 2];

and make sure you understand the results of degexpnad(x).

3. [7pt] For a training set size of 300, turn in the mean squared training and test errors
for maximal degrees of zero through eight.

“Sanity check”: for maximal degree two, you should get a training error of 6.8164
and a test error of 9.4656).

Answer:
The training and test errors we got are listed in the table below:

Degree Training error Test error

0 63.887201 50.599153
1 10.222106 13.702433
2 6.816417 9.465568
3 6.383646 7.042212
4 6.200593 11.294545
5 6.055586 105.603196
6 5.973245 13714127.434883
7 5.598525 418342920955.738220
8 5.464701 254846135855.677948

4. [15pt] Explain the qualitative behavior of the test error as a function of the polyno-
mial degree. Which degree seems to be the best choice?
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Answer: The higher the maximal degree in the polynomial regression model,
the better it can fit complex patterns in the data. The model classes indexed
by the maximal degree are also nested in the sense that the models with higher
maximal degree include those with lower maximal degree as special cases (we
can simply set the higher order coefficients to zero). This means that by in-
creasing the maximal degree, we never loose any ability to fit the data, only
increase it. This accounts for the monotonically decreasing value of the training
error as we increase the degree. Initially, this also leads to an improved gener-
alization performance (as measured by the test error) - the model fits better
the true underlying distribution of the problem. However, the more complex
model also has more parameters, and consequently requires more data points
to adequately estimate those parameters. Without providing additional data,
we are bound to start overfitting the complex model to the data - that is,
instead of fitting the true behavior, the model fits “artifacts” that are present
in the specific data set but are not typical for the data in general. As a result,
the generalization error (and its estimate, the test error) start deteriorating.

The best choice of a degree here is to pick the degree with minimal test
error, which is 3. From our experiments, it appears that the model correspond-
ing to maximal degree 3 complex enough to fit the data well (on the test set,
better than other models), but not “too complex” so it does not grossly overfit
the training set.

Although this experiment suggest 3 as the best choice, in practice a more
careful evaluation would be required. What we really want to minimize is the
generalization error, of which test error is an estimate; this estimate, though
unbiased, is a random variable, and has nonzero variance. It is conceivable
that with a different test set, another model say of degree 2, would show
better test performance. A typical methodology in practice consists of training
different models on the same training set, choosing one based on a separate
validation set (the role played in our experiments by the “test set”) and finally
evaluating the chosen model on a separate test set (the last step is missing in
our experiments).

5. [15pt] In real life, the measured values of the target function (MPG in this case) will
be affected by noise. That is, if the “true” value of the function is ytrue = f(x,wtrue),
then the value we record (and the one included in the data set) is y = ytrue + ε,
where ε is a random noise with distribution p(ε). The weights ŵ, found with linear
regression from x and y, are an estimate of the true weights wtrue. We would like to
find how biased is this estimate (more about the bias of an estimator in the Problem
2). Assuming Ep(ε) [ε] = 0, what is the bias Ep(ε) [ŵ −wtrue]?

Answer: First, our assumption about the underlying noiseless model here can
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be written as ytrue = Xwtrue. Multiplying both sides by
(
XTX

)−1
XT , we get

wtrue =
(
XTX

)−1
XTytrue.

Now,

Ep(ε) [ŵ] =Ep(ε)

[(
XTX

)−1
XTy

]
=Ep(ε)

[(
XTX

)−1
XT (ytrue + ε)

]
=Ep(ε)

[(
XTX

)−1
XTytrue

]
+ Ep(ε)

[(
XTX

)−1
XT ε

]
=wtrue +

(
XTX

)−1
XTEp(ε) [ε] = wtrue.

That is, as was stated in the lecture, ŵ is unbiased.
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Problem 2: estimation

Reference: Lecture 1-2; Recitations; Chapter 4.

The distribution of random variables we deal with often belongs to a particular parametric
family , P (x ; θ). For instance, the number h of heads in a series of n coin tosses has
binomial distribution P (h; p) =

(
n
h

)
ph(1− p)h with parameter p, the probability of a head

in a single toss. A Gaussian univariate distribution has two parameters - the mean µ and
the variance σ2. The likelihood L(x; θ) of the data x given the value of the parameter θ is
the value of P (x|θ); the different terminology and notation here is used to emphasize that
we are concerned with the function of θ, having observed the data, rather than predicting
the value of the data.

In this problem, we will derive estimators for the parameters of the multinomial distribu-
tion. Consider a sequence of n independent random trials, each having one of N possible
outcomes 1, . . . , N . In each trial, the outcome k occurs with probability πk. Of course,
since one of 1, . . . , N necessarily occurs,

∑
k πk = 1. The random vector X1, . . . , XN , where

Xk is the count of times k was the outcome of a trial, has multinomial distribution

P (X1 = x1, . . . , XN = xN) =
n!∏N

k=1 xk!

N∏
j=1

π
xj
j .

An example of such distribution, for the case of N = 2, is the perhaps more familiar
binomial distribution - for instance, the counts of heads and tails in n coin tosses. The
distribution of the counts of 1 through 6 in a series of n rolls of a die is multinomial as
well. Remember that the values drawn from the multinomial distribution are the counts
of outcomes 1, . . . , N in n trials, and not the outcomes themselves.

Maximum Likelihood Estimation We’d like to find the parameter setting θ̂ that
best “explains the data”. More precisely, we need a measure of how well the dis-
tribution p(·|θ) with different values of θ fits the observed data x. Since p(x|θ) is
the probability of reproducing the data x as samples from the distribution, it seems
natural to try to maximize this probability. This gives the Maximum Likelihood
estimation criterion for θ:

θ̂ML = argmax
θ
L(x; θ).

Note that likelihood of a set of independently identically distributed (i.i.d.) ran-
dom variables is the product of their likelihoods (by definition of independence):
L(x1, . . . , xn; θ) =

∏n
i=1 L(xi; θ). This expression can be quite complicated, and make

maximization technically challenging. However, any monotonically increasing func-
tion of the likelihood will have the same maxima. One such function is log-likelihood
logL(x; θ); taking the log turns the product into a sum, making derivatives signifi-
cantly simpler. We will follow this practice of maximizing the log-likelihood instead
of likelihood.
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1. [20pt] Write down the log-likelihood of a set of observed values from multinomial
distribution, and derive the ML estimator for the parameters πi, i = 1, . . . , N .

Advice: Note that the effective number of parameters (“degrees of freedom”) of this distribution

is N − 1 rather than N (make sure you understand why).

Answer: We start with writing down the log-likelihood of a set of observations
X = (x1, . . . , xn), given the multinomial parameter vector π = [π1, . . . , πN ]:

logL(X ; π) = log n!− log
N∏
k=1

xk! +
N∑
j=1

xj log πj

Note that also we refer to N parameters in the above, there are only N −1
degrees of freedom, due to the constraint

∑
k πk = 1; we can express one of

the parameters in terms of the other, say πN = 1−
∑N−1

k=1 πk.
Now, we are interested in maximizing log-likelihood as a function of π, so

we can ignore the terms independent of π:

π̂ML =argmax
π

logL(X ; π) = argmax
π

N∑
j=1

xj log πj

=arg max
π1,πN−1

N−1∑
j=1

xj log πj + xN log

(
1−

N−1∑
i=1

πi

)
,

i.e. π̂ML is the solution of the following system of equations:
∂
∂π1

logL(X ; π) = x1

π1
− xN

1−
∑N−1
i=1 πi

= x1

π1
− xN

πN
= 0

...
∂

∂πN−1
logL(X ; π) = xN−1

πN−1
− xN

1−
∑N−1
i=1 πi

= xN−1

πN−1
− xN

πN
= 0

From this we can infer that

xi
π̂i

= c (constant)

or, alternatively, π̂i = xi/c, for all i = 1, . . . , N . Since π̂i has to sum to one,
we see that c has to be

c =
N∑
j=1

xj

This finally gives the result

π̂k = xk/
N∑
j=1

xj.

That is, the ML estimate of πk is the observed frequency xk/n.
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2. [5pt] Let θ̂(X1, . . . , Xn) be an estimator based on data X1, . . . , Xn, where the data are
viewed as random samples from p(·|θ). We can try to assess how well the estimator
can recover the parameters θ. One useful measure is the bias of the estimator. This

is defined as the expectation E
[
θ̂(X1, . . . , Xn)− θ

]
, taken with respect to the true

distribution of the data X1, . . . , Xn, which in this case is p(·|θ). The bias measures
whether the estimator systematically deviates from the true parameters θ that were
used to generate the data. An estimator is called unbiased if its bias is zero. Show
that the ML estimator π̂kML is indeed unbiased in this sense.

Answer: To show this, we need to find the expected value of the ML es-
timator, with respect to the distribution of the observations. Let oik, i =
1, . . . , n, k = 1, . . . , N be random variables

oik =

{
1 if observation xi = k,

0 otherwise.

Note that E [oik] = πk. Now, π̂k =
∑n

i=1 o
i
k/n, therefore,

E [π̂k] =
n∑
i=1

E
[
oik
]
/n =

n∑
i=1

πk/n = πk,

which proves the lack of bias.

Maximum A-Posteriori (MAP) Estimation ML estimator treats the parameter
θ as an unknown fixed value, and tries to find a value which is most likely, based only
on the observed data. A more sophisticated approach could be to treat θ as a random
variable itself, having a distribution p(θ). We can then seek the value of θ that is the
best fit both to our prior belief about θ, expressed by p(θ), and to the observed data
x. For instance, consider a biased coin, and a series of 20 tosses that all happen to
be heads. ML estimator of the parameter p of binomial distribution will tell us that
p = 1, i.e. tails will never occur. This seems unreasonable, however, since we believe
that even the very biased coin would at least rarely produce a tail.

The Maximum A-Posteriori (MAP) estimator allows us to incorporate such knowl-
edge into the estimate. In MAP, we explicitly maximize the posterior probability of
θ given x:

θ̂MAP = argmax
θ
p(θ|x).

Now, from the definition of conditional probability, and using Bayes rule, we have

p(θ|x) =
p(θ, x)

p(x)
=
p(x|θ)p(θ)
p(x)

.

10



The denominator p(x) is independent of θ; it is, in fact, equal to
∫
θ
p(x, θ)p(θ)dθ

(why?). Therefore, it can be ignored in the maximization, and thus the MAP esti-
mator is

θ̂MAP = argmax
θ
p(x|θ)p(θ).

Note that as opposed to ML, MAP estimator is somewhat “subjective”; its value de-
pends on the particular prior p(θ) that one believes is appropriate. A commonly used
prior for the parameters of the multinomial distribution is the Dirichlet distribution.
This is a distribution over vectors π such that all elements πk > 0 and

∑
πk = 1.

The Dirichlet distribution can be written as

D(π1, . . . , πN) =
1

Z

N∏
k=1

παk−1
k

where αk are the hyperparameters (parameters of the prior), and Z is a normalization
constant needed to make this a valid distribution.

3. [20pt] Derive the MAP estimate of the parameters of multinomial distribution, using
the Dirichlet prior.

Hint: write down the term maximized by MAP as the product of likelihood and prior,
take the log, and follow steps similar to the derivation of the ML estimator.

Answer: The MAP estimate, by definition, is

π̂MAP = argmax
π

log p(X|π)p(π) = argmax
π

(
N∑
j=1

xj log πj +
N∑
j=1

(αj − 1) log πj

)
,

and the corresponding optimization constraints are expressed by the system

xk + αk − 1

πk
=
xN + αN − 1

πN
, k = 1, . . . , N − 1.

Solving this system in a way very similar to our solution for the ML estimate,
we get

π̂k =
xk + αk − 1∑N
j=1(xj + αj − 1)

.

Note that this is equivalent to ML estimate, but taking into account, in addition
to the observations X, a hypothetical additional set of observations, in which
the outcome K occurs αK − 1 times.

4. (Optional) We would like the influence of the prior to be in some sense proportional
to our confidence in it. Suggest a way of achieving this with the Dirichlet prior.
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Answer: We might believe a priori that the parameters πj should be some-
thing like pj, where pj ≥ 0, and

∑
j pj = 1. We’d like to express this prior

belief in a Dirichlet distribution and also specify the strength of our belief.
We can do this easily by setting αk = αpk, where larger values of α serve
to concentrate the prior distribution around pj (we would need more data to
overcome such a prior). You can see this from the previous result by letting
α→∞. In this case, π̂j = pj as expected.

5. [5pt] Show that the influence of any fixed prior on the estimate of multinomial pa-
rameters becomes less significant as the amount of data increases. That is, show that
as K =

∑
k xk increases, π̂kMAP approaches a limit which is independent of the prior.

This is a sensible conclusion since with sufficient data it shouldn’t matter what we
thought about the parameter values prior to seeing the data.

Answer: First of all, we notice that

lim
n→∞

αk − 1

n+
∑

j αj − 1
= 0.

Therefore, limn→∞ π̂kMAP = limn→∞
xk

n+
∑
j αj−1

. Now,

lim
n→∞

π̂kML/π̂kMAP = lim
n→∞

n+
∑

j αj − 1

n
= 1,

that is, as the number of available observations increases, the MAP estimate
approaches the ML estimate, which is of course independent of the fixed values
of αj.
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