
6.867 Machine Learning

Problem set 2

Due Thursday, October 3, in class

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). When answering question of the form
What is X or Write down X show how exactly you arrived at the answer, without missing
crucial steps in reasoning. You may turn in answers to questions marked “optional”— they
will be read and corrected, but a grade will not be recorded for them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question. Do not turn in code supplied to you with the problem set.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write your
name on the top of every page.

Problem 1: active learning

We saw in the lectures how active learning can be used in the context of regression problems.
Here we will apply the ideas of active learning to another task - classification. We are
concerned with a binary classification problem, where input vectors x are associated with
one of the two classes, called “positive” (labeled 1) and “negative” (labeled 0). The learner
is presented with a labeled set of training examples; in addition, an “oracle” is available -
that is, a function that given a data point, returns the label of the class that generated this
point. Note that no other information is available available to the learner - for example, no
knowledge regarding the form of underlying probability distributions. The goal, of course,
is to develop a classification rule that will predict the class label for any new input vectors.

The classifier we want to use in this problem is the K-nearest neighbor (kNN) classifier.
“Training” of kNN consists simply of collecting n labeled pointsXtrain = (x1, y1), . . . , (xn, yn).
At the “testing” phase, when presented with an unlabeled input vector x, the classifier finds
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the k points in the training set that are the closest to x (here relative to the Euclidean
distance ‖x−xi‖), and assigns x the label shared by the majority of these k nearest neigh-
bors. Note that k is a parameter of the classifier; it is typically set to an odd value, in
order to prevent “ties”.

We will experiment with the active learning method on a simple binary classification task
over 2-dimensional Euclidean space in order to be able to view the results. You can use
the implementation of kNNavailable for download from the course site (it is a slightly
modified part of a software library accompanying Bishop’s “Neural Network for Pattern
Recognition”). You can prepare a kNNclassifier by a call to

knn_classifier = knn(d,k,Xtrain,Ytrain)

where d is the dimension of input vectors (2 in our case), k is the number of neighbors to
be used by kNN, and Xtrain,Ytrain are respectively the input vectors (one per row) and
the corresponding labels (column of 1/0). Once a classifier has been constructed, it can be
applied on a set of input vectors Xtest by running

nncount=knntest(knn_classifier,Xtest)

which returns in nncount the relative count, for each test example, of the negative and
positive examples among its k nearest neighbors in the training set on which the classifier
is based. More precisely, let us denote the counts of positive and negative examples among
the k nearest neighbors of x by n+

k (x) and n−k (x) respectively. The value in nncount cor-
responding to the test example x is

(
n+
k (x)− n−k (x)

)
/k - for instance, with 2 positive and

5 negative nearest neighbors (in 7-NN classifier) it would be (2-5)/7=-3/7. Obviously, the
sign of this relative count conveys the predicted label of the example (positive corresponds
to 1, negative to 0).

Note that n+
k (x) and n+

k (x) are related to our (perceived) confidence regarding the label of
x. If all n+

k (x) = k, i.e. all k nearest neighbors are positive, then we are fairly confident
about predicting +1 as the label for x. If n+

k (x) = (k+1)/2 and n+
k (x) = (k−1)/2, we will

still label x as positive, but the training data provides much less support for this decision.

We shall measure our confidence in the predicted label for x by

C(x) =
|n+
k (x)− n−k (x)|

k
.

Note that C(x) takes values between 1/k and 1 for odd k.

We can now make use of C(x) to construct a simple active learning strategy. We start with
a small training set of n labeled points, and a large set of unlabeled points (for instance,
all the points on a bounded 2D grid). The unlabeled points here define the points we can
query labels for. The active learning algorithm proceeds by adding new labeled points to
the labeled set, one at a time. In each iteration, it chooses the unlabeled point whose label
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we have least confidence in (breaking ties randomly). The labels are provided by the oracle.
The algorithm stops when it has labeled sufficiently many points, and returns kNNclassifier
based on the accumulated set of labeled points.

(Note: a more reasonable active learning method would be based on “value of information
calculations” alluded to in the lectures. Such an approach would inspect the expected con-
sequencies of labeling a particular point in addition to looking at the measure of confidence.
For example, labeling a point generally affects the confidence in other labels as well – the
labels are “tied” in this sense. We should take into account such effects in deciding which
point is the most useful to label. We will revisit these issues in later on in the course. The
simple active learning method suffices for our purposes here. )

1. [7pt] Using the training data provided in XYtrain.dat, construct kNNclassifier with
k = 7. These data points were sampled independently from the corresponding class-
conditionals of each class. What is the training error of the kNNclassifier? Test it on
the test data provided in XYtest.dat. (All the data files mentioned in this problem
set are in text format, with the input vectors first on each row, and the last column
occupied by the class label.) What is the test error?

Advice: A simple way of generating a random sampling of m out of n points, without replace-

ment: let the rows of X be your n points. Then, construct a random permutation of indices

in X by calling rp=randperm(size(X,1));, take the first m elements, and your sample is in

X(rp(1:m),:).

2. [23pt] Now randomly select 4 data points from each class in XYtrain, and run active
learning algorithm by call to

[al_classifier,selectedX]=activelearn(Xstart,Ystart,k,grid,queries);

with Xstart,Ystart being the randomly selected labeled points and their labels,
k = 7 is the parameter of kNN, grid is the grid constructed using make2Dgrid, and
queries is the number of points that the active learner may label during its run. Let
queries be half of the number of examples in the labeled training set (that is, 50).

What is the training error (i.e. the error on the set of labeled points used by the
active learning)? What is the test error? Explain the differences, if any, between
the test error of the actively learned kNNand the classifier learned in the previous
question (based on twice the number of labeled points but sampled i.i.d. from each
class). Plot the originally labeled points and the points selected by the active learner,
and refer to the plot in your explanation.

You may find the following Matlab functions (available from the course website)
useful; see the comments in the code for the semantics and usage.

y = oracle(x);

grid = make2Dgrid(limX,limY,N);

plotres(x,y,selected);
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Problem 2: Optimal classification

In this problem we shall investigate decision making process, with the assumption (often
unrealistic in practice) that the underlying probability densities are known for each class.

We saw in class that the optimal classification rule for binary classification problem
when the class-conditional densities p(x|y = 0) and p(x|y = 1) are known, is given
by choosing the label with maximum posterior:

y∗(x) = argmax
y
p(y|x). (1)

We will now show that this rule is indeed optimal, in the sense defined shortly. Let
L(y, ŷ) be the loss that we would incur if we predict ŷ when the true label is y.
For example, the 0/1 loss corresponds to the case where there is no penalty for the
correct decision and a fixed penalty 1 for any incorrect decision (that is, if y 6= ŷ).
We can express the 0/1 loss as 1− δy,ŷ, where δi,j is Kronecker’s delta taking a value
1 when i = j and zero otherwise. The expected loss associated with the decision rule
ŷ(x) is the expectation E(x,y)∼p [L(y, ŷ(x))]. In other words, we measure the average
loss that we would incur if we sampled examples from the true distribution p(x, y)
over examples and labels. Note that with 0/1 loss this expected loss is exactly the
probability of miss-classifying an example. Make sure you understand why before
continuing.

1. [25pt] Show that the classification rule (1) indeed minimizes the expected loss of the
decision for the 0/1 loss.

Hint: consider the expected loss as the expectation of the loss value on pairs (x, y)
sampled from the joint distribution; think of how we should sample from the joint
distribution when we know that p(x, y) = p(x)p(y|x) = p(y)p(x|y), i.e., we can either
first sample x from p(x) and then y from p(y|x) or vice versa; note that since we
don’t have any restrictions on how the decision rule can depend on x, the optimal
decision rule has to be optimal in some sense for each x separately.

Now, let us depart from the implicit assumption of cost symmetry. That is, we now
assume that there is a loss L(y, ŷ) associated with each pair of our decision ŷ and
the true class label is y. Such loss function can be defined by the elements of the
K ×K cost matrix C; the element cij gives the loss when ŷ = i and the true label
is y = j. We require that the elements of C are non-negative, but impose no further
constraints. A practical example of such situation is the cost associated with doctor’s
decision on the patient’s illness, given the symptoms (and test results). It is much
more harmful to assume that the patient has common cold when in fact the patient
has cholera, than vice versa.

2. [10pt] Show how the classification rule (1) is modified under this more general loss
function.
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Problem 3: discriminative versus generative models for

classification

In this problem we will investigate how generative and discriminative models might differ
as classification methods.

1. [10pt] We consider here a two-class classification problem. Let’s assume that the
class-conditional distributions are bi-variate Gaussians and that the prior class fre-
quencies are the same for the two classes. Fit the Gaussian models to the data in
each of the files

XYsmall.dat

XYtrain.dat

XYLarge.dat

Report the classification error for the resulting generative model and the test error
on the data in XYtest.dat for each of these 3 training sets. What do you expect the
training and test error to become as the number of both training and test examples
approaches infinity?

Advice: You may find the standard Matlab functions mean and cov useful for estimating the

parameters of a generative model, and the functions multigaussian and plotgaussians

available on the course website, for plotting the bivariate Gaussian pdf and for using it for

prediction.

2. [25pt] Now, train the logistic regression model with quadratic boundary on the same
training data, using the Matlab function

w = logisticreg(X,y)

which returns parameters w of logistic regression trained on input vectors X and labels
y. The model can be tested using

labels = logistictest(x,y,w);

Note that in order to train and test quadratic logistic regression, yu must transform
the input to include the quadratic features. This can be done with the function
fullexpand2, available on the website. The corresponding calls would be

w = logisticreg(fullexpand2(x),y);

y_logreg = logistictest(fullexpand2(x),y,w);
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Report the training error of the logistic regression model, as well as the test error
on XYtest.dat, for each of the same 3 training sets as in question 1. For each of
the training sets, turn in the plots, on the same figure, of the decision boundaries
corresponding to logistic regression and the corresponding generative model from
question 1 (functions plotgaussians and plotlogreg, available from the website,
will be useful here). Explain the differences in the boundaries on each plot, and the
differences between plots. What would you expect top see on a plot corresponding
to an infinite number of training examples provided to both models?
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