
6.867 Machine Learning

Problem set 2 - solutions

Thursday, October 3

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). When answering question of the form
What is X or Write down X show how exactly you arrived at the answer, without missing
crucial steps in reasoning. You may turn in answers to questions marked “optional”— they
will be read and corrected, but a grade will not be recorded for them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question. Do not turn in code supplied to you with the problem set.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write your
name on the top of every page.

Problem 1: active learning

We saw in the lectures how active learning can be used in the context of regression problems.
Here we will apply the ideas of active learning to another task - classification. We are
concerned with a binary classification problem, where input vectors x are associated with
one of the two classes, called “positive” (labeled 1) and “negative” (labeled 0). The learner
is presented with a labeled set of training examples; in addition, an “oracle” is available -
that is, a function that given a data point, returns the label of the class that generated this
point. Note that no other information is available available to the learner - for example, no
knowledge regarding the form of underlying probability distributions. The goal, of course,
is to develop a classification rule that will predict the class label for any new input vectors.

The classifier we want to use in this problem is the K-nearest neighbor (kNN) classifier.
“Training” of kNN consists simply of collecting n labeled pointsXtrain = (x1, y1), . . . , (xn, yn).
At the “testing” phase, when presented with an unlabeled input vector x, the classifier finds
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the k points in the training set that are the closest to x (here relative to the Euclidean
distance ‖x−xi‖), and assigns x the label shared by the majority of these k nearest neigh-
bors. Note that k is a parameter of the classifier; it is typically set to an odd value, in
order to prevent “ties”.

We will experiment with the active learning method on a simple binary classification task
over 2-dimensional Euclidean space in order to be able to view the results. You can use
the implementation of kNNavailable for download from the course site (it is a slightly
modified part of a software library accompanying Bishop’s “Neural Network for Pattern
Recognition”). You can prepare a kNNclassifier by a call to

knn_classifier = knn(d,k,Xtrain,Ytrain)

where d is the dimension of input vectors (2 in our case), k is the number of neighbors to
be used by kNN, and Xtrain,Ytrain are respectively the input vectors (one per row) and
the corresponding labels (column of 1/0). Once a classifier has been constructed, it can be
applied on a set of input vectors Xtest by running

nncount=knntest(knn_classifier,Xtest)

which returns in nncount the relative count, for each test example, of the negative and
positive examples among its k nearest neighbors in the training set on which the classifier
is based. More precisely, let us denote the counts of positive and negative examples among
the k nearest neighbors of x by n+

k (x) and n−k (x) respectively. The value in nncount cor-
responding to the test example x is

(
n+
k (x)− n−k (x)

)
/k - for instance, with 2 positive and

5 negative nearest neighbors (in 7-NN classifier) it would be (2-5)/7=-3/7. Obviously, the
sign of this relative count conveys the predicted label of the example (positive corresponds
to 1, negative to 0).

Note that n+
k (x) and n+

k (x) are related to our (perceived) confidence regarding the label of
x. If all n+

k (x) = k, i.e. all k nearest neighbors are positive, then we are fairly confident
about predicting +1 as the label for x. If n+

k (x) = (k+1)/2 and n+
k (x) = (k−1)/2, we will

still label x as positive, but the training data provides much less support for this decision.

We shall measure our confidence in the predicted label for x by

C(x) =
|n+
k (x)− n−k (x)|

k
.

Note that C(x) takes values between 1/k and 1 for odd k.

We can now make use of C(x) to construct a simple active learning strategy. We start with
a small training set of n labeled points, and a large set of unlabeled points (for instance,
all the points on a bounded 2D grid). The unlabeled points here define the points we can
query labels for. The active learning algorithm proceeds by adding new labeled points to
the labeled set, one at a time. In each iteration, it chooses the unlabeled point whose label

2



we have least confidence in (breaking ties randomly). The labels are provided by the oracle.
The algorithm stops when it has labeled sufficiently many points, and returns kNNclassifier
based on the accumulated set of labeled points.

(Note: a more reasonable active learning method would be based on “value of information
calculations” alluded to in the lectures. Such an approach would inspect the expected con-
sequences of labeling a particular point in addition to looking at the measure of confidence.
For example, labeling a point generally affects the confidence in other labels as well – the
labels are “tied” in this sense. We should take into account such effects in deciding which
point is the most useful to label. We will revisit these issues in later on in the course. The
simple active learning method suffices for our purposes here. )

1. [7pt] Using the training data provided in XYtrain.dat, construct kNNclassifier with
k = 7. These data points were sampled independently from the corresponding class-
conditionals of each class. What is the training error of the kNNclassifier? Test it on
the test data provided in XYtest.dat. (All the data files mentioned in this problem
set are in text format, with the input vectors first on each row, and the last column
occupied by the class label.) What is the test error?

Answer: The data used in this problem was drawn from two Gaussian dis-
tributions (as would become clear, for instance, from looking at the code of
oracle.m). The i.i.d. sampling generates data points of which many are rela-
tively far from the other class, and from the decision boundary. One can expect
to do better with points which are more concentrated enough to the other class
to allow “fine tuning” of the decision boundary.

The training error of the kNNclassifier is 5%. The test error is 8.3%.

Scoring: 7 points if the numbers are right

Advice: A simple way of generating a random sampling of m out of n points, without replace-

ment: let the rows of X be your n points. Then, construct a random permutation of indices

in X by calling rp=randperm(size(X,1));, take the first m elements, and your sample is in

X(rp(1:m),:).

2. [23pt] Now randomly select 4 data points from each class in XYtrain, and run active
learning algorithm by call to

[al_classifier,selectedX]=activelearn(Xstart,Ystart,k,grid,queries);

with Xstart,Ystart being the randomly selected labeled points and their labels,
k = 7 is the parameter of kNN, grid is the grid constructed using make2Dgrid, and
queries is the number of points that the active learner may label during its run. Let
queries be half of the number of examples in the labeled training set (that is, 50).
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What is the training error (i.e. the error on the set of labeled points used by the
active learning)? What is the test error? Explain the differences, if any, between the
test error of the actively learned kNNand the classifier learned with the same number
of labeled points but sampled i.i.d. from each class. Plot the originally labeled points
and the points selected by the active learner, and refer to the plot in your explanation.

You may find the following Matlab functions (available from the course website)
useful; see the comments in the code for the semantics and usage.

y = oracle(x);

grid = make2Dgrid(limX,limY,N);

plotres(x,y,selected);

Answer: Before we proceed with a solution, let us mention an example of
a practical situation where active learning (AL) with “oracle” makes sense.
Consider a fatal decease which we would like to learn to diagnose with a few
inexpensive blood tests. The decease already can be diagnosed with 100%
precision (or almost that) by running an extremely expensive series of hi-tech
tests (MRI and alike). In this situation, we could just send lots of randomly
selected people to MRI and use the returned results as labels for training; AL
could be more compelling however since we are interested in doing expensive
“oracle” tests only on the patients who will contribute to a better blood test
diagnosis.

Let us now return to our simple AL algorithm. There is, of course, an
element of randomness introduced by the choice of the first 8 labeled points, as
well as by the random tie-breaking between points with equal C, and therefore
the test error of the AL classifier is a random variable. However, repeating this
experiment for a large number of times would show that the distribution of
this random variable is peaked around value very close to the test error of the
original kNN. You were not required to repeat the experiment, although doing
so certainly helps to understand the underlying process.

Figure 1 shows two quite extreme samples from the said distribution. To
the left, the AL classifier has training error 14% and test error 12.8%, which
is worse than the test error of the original classifier. To the right, the training
and test error are respectively 8% and 6.8%, which means we do better than
the original classifier, even with half of the number of labeled points. Note that
the selected points (circles) tend to be close to the correct decision boundary;
more so on the right, which leads to a better generalization performance. On
the other hand, many of these points are concentrated in areas where the
probability of input (under the true Gaussian class-conditionals), and therefore
these points’ contribution to reducing the generalization error, is low (this has
to do with the localized nature of the kNNclassifier: the points other than the
closest k neighbors of x do not matter for the classification of x).
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If we allow for 100 queries in the AL algorithm, we get results like that
shown in Figure 2(a). The distribution of the test error in that case becomes
even more peaked, and its mean becomes lower than the test error of the
original classifier. Another way to improve the performance of AL is to run it
on a smaller grid, for example bounded by (-2,2), as shown in Figure 2(b). The
advantage here is in concentrating on the “important” areas in terms of data
density - of course, knowing this requires some knowledge, or estimate about
the true distribution of the data.

In summary, in this case we get essentially the same results with AL as
without it, but with half of the number of labeled points; this is due to the fact
that the points selected for query are generally closer to the decision boundary.
If we allow same number of queries as used by the original algorithm, we slightly
improve the results.
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(a) Test error 12.8%
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(b) Test error 6.8%

Figure 1: Results of active learning for different random choices of the “seed” points

Scoring: 7 points for providing correct plot; 5 points for understanding that the error
is a random variable; 6 points for reasonable values of errors; 6 points for explanation
of the trend of AL points towards the boundary; 3 points for explanation that points
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(a) AL with 100 queries;test error 7.7%
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(b) AL on a smaller grid; test error 7.5%

Figure 2: Possible improvements on AL performance

in low-density areas do not improve result by much; 3 points for various other correct
remarks.
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Problem 2: Optimal classification

In this problem we shall investigate decision making process, with the assumption (often
unrealistic in practice) that the underlying probability densities are known for each class.

We saw in class that the optimal classification rule for binary classification problem
when the class-conditional densities p(x|y = 0) and p(x|y = 1) are known, is given
by choosing the label with maximum posterior:

y∗(x) = argmax
y
p(y|x). (1)

We will now show that this rule is indeed optimal, in the sense defined shortly. Let
L(y∗, ŷ) be the loss that we would incur if we predict ŷ when the true label is y∗.
For example, the 0/1 loss corresponds to the case where there is no penalty for the
correct decision and a fixed penalty 1 for any incorrect decision (that is, if y∗ 6= ŷ).
We can express the 0/1 loss as 1− δy∗,ŷ, where δi,j is Kronecker’s delta taking a value
1 when i = j and zero otherwise. The expected loss associated with the decision rule
ŷ(x) is the expectation E(x,y)∼p [L(y, ŷ(x))]. In other words, we measure the average
loss that we would incur if we sampled examples from the true distribution p(x, y)
over examples and labels. Note that with 0/1 loss this expected loss is exactly the
probability of miss-classifying an example. Make sure you understand why before
continuing.

1. [25pt] Show that the classification rule (1) indeed minimizes the expected loss of the
decision for the 0/1 loss.

Hint: consider the expected loss as the expectation of the loss value on pairs (x, y)
sampled from the joint distribution; think of how we should sample from the joint
distribution when we know that p(x, y) = p(x)p(y|x) = p(y)p(x|y), i.e., we can either
first sample x from p(x) and then y from p(y|x) or vice versa; note that since we
don’t have any restrictions on how the decision rule can depend on x, the optimal
decision rule has to be optimal in some sense for each x separately.

Answer: Here is the explicit expression for the expected loss:

Ep(x,y) [L(y, ŷ(x))] =

∫
x

∑
y

L(y, ŷ(x))p(x, y)dx

=

∫
x

p(x)
∑
y

(
1− δy,ŷ(x)

)
p(y|x)dx.

Let us restate our sampling model. We have a fixed rule ŷ(x) - that is, we
specify how ŷ should be chosen for any x, prior to seeing any data. Then, we
sample x′ ∼ p(x), compute ŷ(x′) based on our rule, sample y ∼ p(y′|x = x′)
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and calculate L(y′, ŷ(x′)). Note that the value of L will be 1 in the event of
y′ 6= ŷ(x′), and 0 in the event y′ = ŷ(x′). For fixed x′, therefore, the loss
associated with ŷ(x′) on that x′, called conditional risk of deciding ŷ given x′,
is

R(ŷ|x′) = Ep(y|x′) [L(y, ŷ)]

=1 ·
∑
y′ 6=ŷ

p(y′|x = x′) + 0 · p(ŷ|x = x′)

=
∑
y′ 6=ŷ

p(y′|x = x′)

=1− p(ŷ|x = x′),

where ŷ = ŷ(x′). In the last step we have used the fact that
∑

y p(y|x) = 1.
It is now sufficient to show that the optimal classification rule minimizes the
conditional risk for every x′. Indeed, if this is true then we can sample (or
otherwise choose) x′ and have the guarantee that we always make the decision
with the smallest loss (error).

The conditional risk R(ŷ|x) is minimized when p(ŷ(x)|x = x′) is maximized
- which finally leads to our rule for y∗ in Equation (1).

Scoring: 7 points for using the hint for loss expression; 8 points for explaining
why minimizing conditional risk for each x is enough; 10 for the remainder of the
derivation

Now, let us depart from the implicit assumption of cost symmetry. That is, we now
assume that there is a loss L(y∗, ŷ) associated with each pair of our decision ŷ and
the true class label is y∗. Such loss function can be defined by the elements of the
K ×K cost matrix C; the element cij gives the loss when ŷ = i and the true label is
y∗ = j. We require that the elements of C are non-negative, but impose no further
constraints. A practical example of such situation is the cost associated with doctor’s
decision on the patient’s illness, given the symptoms (and test results). It is much
more harmful to assume that the patient has common cold when in fact the patient
has cholera, than vice versa.

2. [10pt] Show how the classification rule (1) is modified under this more general loss
function.

Answer: We can follow the same idea of imaginary sampling first from x ∼
p(x) and then from y ∼ p(y|x) as in 1; we have also established that it is
sufficient to minimize the conditional risk for any fixed x′, that is, we must
choose

y∗(x′) = argmin
y
Ly(x

′) = argmin
y

∑
y′

p(y′|x′)cy,y′ .
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For the binary case, we can further simplify this rule: we choose y∗(x′) = 1 if
and only if

L1(x′) ≤ L0(x′)

⇔ p(y = 0|x′)c10 + p(y = 1|x′)c11 ≤ p(y = 0|x′)c00 + p(y = 1|x′)c01

⇔ p(0|x′) (c10 − c00) ≤ p(1|x) (c01 − c11) ,

so that the optimal rule can be expressed as

y∗(x) = argmax
y
p(y|x) (cỹ,y − cy,y) , (2)

where ỹ means “not y”, i.e. 0̃ = 1, 1̃ = 0. The modified rule (2) means that
we should scale the posteriors by the cost differences between being wrong and
being correct. For example, if the costs are c00 = c11 = 0,c10 = 3,c01 = 1,
then for a given x the posterior p(1|x) must be at least 3 times higher than
p(0|x) in order to justify classification y(x) = 1.

Scoring: 6 points for having the correct rule; 4 for derivation
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Problem 3: discriminative versus generative models for

classification

In this problem we will investigate how generative and discriminative models might differ
as classification methods.

1. [10pt] We consider here a two-class classification problem. Let’s assume that the
class-conditional distributions are bi-variate Gaussians and that the prior class fre-
quencies are the same for the two classes. Fit the Gaussian models to the data in
each of the files

XYsmall.dat

XYtrain.dat

XYLarge.dat

Report the classification error for the resulting generative model and the test error
on the data in XYtest.dat for each of these 3 training sets. What do you expect the
training and test error to become as the number of both training and test examples
approaches infinity?

Advice: You may find the standard Matlab functions mean and cov useful for estimating the

parameters of a generative model, and the functions multigaussian and plotgaussians

available on the course website, for plotting the bivariate Gaussian pdf and for using it for

prediction.

Answer: In Figure 3, the solid line shows the decision induced by the genera-
tive model, and the dashed line shows the boundary found by logistic regression.
For the reference, we note again that both classes have Gaussian distributions
with covariance I and means respectively in (-1,-1) and (1,1). The Bayes op-
timum decision boundary, computed from this information, is shown by the
dotted line in Fig. 3(d). Of course, this is for analysis only - we can not as-
sume that this information about the true nature of the problem is accessible
to any of the learning algorithms.

The errors of the generative model (after fixing the bug in the function
predictgaussians) are:

XYsmall XYtrain XYlarge

Training 0 5% 7.1%
Test 9.2% 7.8% 7.4%

The higher the number of samples in the training set, the closer are the
estimated parameters of the Gaussians to the true parameters (graphically, it
corresponds to the ellipsoidal contours estimated for the two Gaussians getting
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(a) XYsmall.dat
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(c) XYlarge.dat
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(d) The true class-conditionals and the optimal
classifier

Figure 3: Results for problem 3. Displayed decision boundaries: solid line - generative
model, dashed - logistic regression, dotted - Bayes optimal classifier
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more similar to the true contours, shown in Fig. 3(d). As a result, the induced
decision boundary is getting closer to to the optimal decision boundary. The
test error is reduced (and comes closer to the Bayes minimal error), and the
training error grows (and also, of course, comes closer to the same limit).

Scoring: 2 points for right numbers, 2 for plots; 4 for stating the boundary approaches
optimal boundary; 2 for explaining effect of very few points.

2. [25pt] Now, train the logistic regression model with quadratic boundary on the same
training data, using the Matlab function

w = logisticreg(X,y)

which returns parameters w of logistic regression trained on input vectors X and labels
y. The model can be tested using

labels = logistictest(x,y,w);

Note that in order to train and test quadratic logistic regression, you must transform
the input to include the quadratic features. This can be done with the function
fullexpand2, available on the website. The corresponding calls would be

w = logisticreg(fullexpand2(x),y);

y_logreg = logistictest(fullexpand2(x),y,w);

Report the training error of the logistic regression model, as well as the test error
on XYtest.dat, for each of the same 3 training sets as in question 1. For each of
the training sets, turn in the plots, on the same figure, of the decision boundaries
corresponding to logistic regression and the corresponding generative model from
question 1 (functions plotgaussians and plotlogreg, available from the website,
will be useful here). Explain the differences in the boundaries on each plot, and the
differences between plots. What would you expect top see on a plot corresponding
to an infinite number of training examples provided to both models?

Answer: The error obtained by logistic regression:

XYsmall XYtrain XYlarge

Training 0 6% 6.9%
Test 8.5% 7.8% 7.4%

The dynamics of the logistic regression performance is, not surprisingly,
similar to that of the generative model - as the training set increases, the
generalization error (as estimated by the test error) gets closer to the Bayes
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error. For a very small data set, logistic regression shows a bit better perfor-
mance - the generative model is too much off due to poor estimation of the
Gaussian parameters (note the two different topologies of the decision regions,
corresponding to two quadratic boundaries in Fig. 3(a)). However, with large
enough training set the logistic regression loses the advantage, and eventually
leads to the decision boundary which is farther from the optimal one (as is
evident from Fig. 3(d)).

It is important to remember that although the decision boundary for logistic
regression in this case “looks” much worse, the test error on a fairly large data
set is very similar to that of the generative model - this is because the regions
in which the decision boundaries are far correspond to very low density of
examples; the error in posterior estimated by the log. regression there is large,
but it is weighted by a low probability within the expected error.

If an unlimited (infinite) number of training examples is available, one can
estimate the parameters of the generative model as close as desired to the
true values; therefore, the decision boundary will approach the Bayes optimum
decision boundary for the true parameters; for our two Gaussians, that is the line
x2 = −x1. As for the discriminative model (logistic regression), its evaluation
of the posteriors also will become as close as desired to the true posterior
in each point, therefore bringing the decision boundary to the same Bayes
optimum boundary. In particular, we would expect the quadratic terms in both
boundaries to vanish.

Scoring: 2 points for error values, 2 for plots; 3 for explaining similar test per-
formance despite the difference in boundaries; 15 for explaining that both models’
boundaries approach the optimal boundary; 5 for other correct observations.
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