
6.867 Machine Learning

Problem set 4

Due Thursday, October 31, in class

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). You may turn in answers to questions
marked “optional”— they will be read and corrected, but a grade will not be recorded for
them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write your
name on the top of every page.

Problem 1: Boosting

In this problem, we slightly modify the AdaBoost algorithm seen in class to better explore
some properties of the algorithm. Specifically, we no longer normalize the weights on the
training examples after each iteration. The modified algorithm, which is set to run for T
iterations, is shown in Algorithm 1.

Note that in the modified version, the weights associated with the training examples are
no longer guaranteed to sum to one after each iteration (and therefore can not be viewed
as a “distribution”), but the algorithm is still valid. Let us denote the sum of weights at

the start of iteration t by Zt =
∑n

i=1 w
(t)
i . At the start of the first iteration of boosting,

Z1 = n.

Let us now investigate the behavior of Zt, as a function of t.

1. [10pt] At the tth iteration we found a weak classifier that achieves a weighted training
error εt. Show that the choice of “votes” given by αt = 1

2
log 1−εt

εt
is optimal in the

1



Algorithm 1 AdaBoost: slightly modified version from the lecture (the weights are not
normalized to sum to one).

Input: Set of n labeled examples (x1, y1), . . . , (xn, yn), yi = ±1.

Set of associated weights w
(1)
1 , . . . , w

(1)
n , initially all w

(1)
i = 1.

Required number of iterations, T .
for t = 1, . . . , T do

Find a weak classifier ht, which outputs binary predictions ht(x) = ±1, such that its
weighted training error

εt =
1

Zt

n∑
i=1

w
(t)
i (1− δ (ht(xi), yi))

satisfies εt < 1/2.
Set the vote αt = 1

2
log 1−εt

εt
.

Update the weights : for each i = 1, . . . , n set

w
(t+1)
i = w

(t)
i e−yiαtht(xi)

end for
Output: the combined classifier defined by

ĥT (x) =
T∑

t=1

αtht(x)

2



sense that it minimizes Zt+1.

Advice: Look at Zt+1 as a function of α, and find the value for which the function achieves its
minimum. You may also find the following notational shorthand useful:

WI =
n∑

i=1

w
(t)
i

(
1− δ(yi, ht(xi))

)
, WC =

n∑

i=1

w
(t)
i δ(yi, ht(xi)),

where WC is the total weight of points classified by ht correctly, and WI the total weight of

misclassified points. δ(y, ht(x)) = 1 whenever the label predicted by ht is correct and zero

otherwise. The weights here are those available at the start of iteration t.

2. [5pt] Show that the sum of weights Zt is monotonically decreasing as a function of t.

We know now that Zt decreases, and that our choice of αt is optimal for minimizing
Zt+1; but is this quantity useful in any way? It is useful in bounding how successive
boosting iterations reduce the training error.

3. [10pt] Show that the training error (the average number of misclassified training
examples) of the combined classifier after m iterations of boosting,

ĥm(x) =
m∑

t=1

αtht(x),

is bounded from above by Zm+1/n.

Advice: In the definition of the algorithm, the weights (and therefore Zt) are defined recursively.
You will find it helpful to “unroll” the definition, and write out the value of Zt+1 in terms of
the initial weights (which are all 1) and the subsequent updates, using α1, . . . , αm. You may
also find the following (simple) fact helpful: for any x ≥ 0, ex ≥ 1.

We have shown that AdaBoost tries in each iteration to minimize an upper bound
on the training error of the combined classifier, and guarantees that this bound will
monotonically decrease as the algorithm proceeds. How much the bound decreases
at each iteration depends on the weighted training error of each weak classifier.

In the AdaBoost algorithm presented above, the vote αt assigned to a weak classifier
ht does not differentiate between the “directions” of mistakes it makes (misclassifying
a positive example as negative or vice versa). We already know that the magnitude
of the vote is related to the performance of the classifier - that is, a classifier which
achieves lower weighted training error will get a higher α. But what if ht makes
almost all of its mistakes on, say, negative examples? That is, for a training example
x if ht(x) = −1, with very high probability x is indeed negative, but if ht(x) = +1,
it is quite likely that in fact x is negative.

Recall that the vote αt measures the influence of ht in the final (combined) classifier.
Thus, it would make sense to assign a high vote to its decisions in the “direction” in
which ht makes fewer mistakes, and a lower vote to the opposite decisions. Algorithm
2 describes the modification in AdaBoost that allows for such a refinement.

3



Algorithm 2 Modified boosting algorithm, allowing different votes for positive and nega-
tive decisions
Input: Set of n labeled examples (x1, y1), . . . , (xn, yn), yi = ±1.

Set of associated weights w
(1)
1 , . . . , w

(1)
n , initially all w

(1)
i = 1.

Required number of iterations, T .
for t = 1, . . . , T do

Find a weak classifier ht, which outputs binary predictions ht(x) = ±1, such that its
weighted training error

εt =
1

Zt

n∑
i=1

w
(t)
i (1− δ (ht(xi), yi))

satisfies εt < 1/2
Set the votes αt, βt (see Question 5).
Update the weights : for each i = 1, . . . , n set

w
(t+1)
i = w

(t)
i e−yivt(xi)

where

vt(x) =

{
αt if ht(x) = 1,

−βt if ht(x) = −1.

end for
Output: the combined classifier defined by

ĥT (x) =
T∑

t=1

vt(x)

4. [3pt] Express Zt+1 as a function of αt, βt and the weights at the start of t-th iteration.

5. [12pt] Fill in the missing part in the algorithm above. That is, find the rules for
computing αt and βt that would minimize Zt+1. You may use the following notational

shorthands: W
(t)
++ is the total weight (under the weights active at the beginning of

the t-th iteration) of the positive examples that are classified as positive by ht; W
(t)
+−

is the total weight of the positive examples misclassified by ht; and similarly defined
W

(t)
−− and W

(t)
−+.

4



Problem 2: Complexity

Here we try to understand a bit better some implications of the fact that the feature vectors
corresponding to the radial basis kernel are functions (living in an infinite dimensional
space). It turns out that the VC-dimension of the classifier that uses a radial basis kernel
is infinite. We can actually make a bit stronger statement: with a radial basis kernel we
can perfectly separate any finite set of distinct training points. Why is this a stronger
statement? To claim that the VC-dimension of a classifier is n we only need to find some
set of n training points that we can shatter; this need not hold for all sets of n points.

To get started we’ll assume that we have a set of n points in Rd. The dimension d is
assumed to be finite and, perhaps surprisingly, plays no role in the argument. We also
make the critical assumption that all the training points are distinct. The radial basis
kernel we use has the following form:

K(x,x′) = exp{− 1

2σ2
‖x− x′‖2 }

where σ2 is a width parameter specifying how quickly the kernel vanishes as the points
move further away from each other. All of our results hold for any positive finite value
of σ2. In other words, whether or not we’ll be able to perfectly separate the training
points has nothing to do with the kernel width. The kernel width does affect generalization
performance, however.

1. [15pt] Let’s proceed in stages. To make things easier we are going to prove a bit
stronger result than necessary. In particular, we’ll show that

minimize
1

2
‖w‖2 subject to yiw

T φ(xi) = 1, i = 1, . . . , n

has a solution regardless of how we set the ±1 training labels yi. You should convince
yourself first that this is consistent with our goal. Here φ(xi) is the feature vector
(function actually) corresponding to the radial basis kernel. Our formulation here is
a bit non-standard for two reasons. We try to find a solution where all the points
are support vectors. This is not possible for all valid kernels but makes our life easier
here. We also omit the bias term since it is not needed for the result.

Introduce Lagrange multipliers for the constraints similarly to finding the SVM solu-
tion (see also the tutorial on Lagrange multipliers distributed along with the lecture
slides) and show the form that the solution ŵ has to take. You can assume that w
and φ(xi) are finite vectors for the purposes of these calculations. Note that the La-
grange multipliers here are no longer constrained to be positive. Since you are trying
to satisfy equality constraints, the Lagrange multipliers can take any real value.

We are after ŵ as a function of the Lagrange multipliers. (this should not involve
lengthy calculations).

5



2. [5pt] Put the resulting solution back into the classification (margin) constraints and
express the result in terms of a linear combination of the radial basis kernels.

3. [5pt] Indicate briefly how we can use the following Michelli theorem to show that any
n by n kernel matrix Kij = K(xi,xj) for i, j = 1, . . . , n is invertible.

Theorem: If ρ(t) is monotonic function in t ∈ [0,∞), then the matrix ρij = ρ(‖xi −
xj‖) is invertible for any distinct set of points xi, i = 1, . . . , n.

4. [10pt] Based on the above results put together the argument to show that we can
indeed find a solution where all the points are support vectors.

Of course the fact that we can in principle separate any set of training examples
does not mean that our classifier does well (on the contrary). So, why do we use the
radial basis kernel? The answer is given by the more refined notions of VC-dimension
such as the V (γ) dimension. This refined notion of complexity takes into account the
margin that we achieve for the linear classifier in the feature space. In other words,
V (γ) is defined as the number of points that we can shatter with margin γ. γ here is
the distance of the closest training point to the linear boundary in the feature space
(the distance is measured in the feature space).

This is useful in our case here since we know that if the feature vectors lie within a
sphere of radius R then V (γ) ≤ R2/γ2. The larger the margin requirement, the fewer
points we can shatter. This is particularly convenient for radial basis kernels since

φ(x)T φ(x) = K(x,x) = 1

In other words, the feature vectors have norm exactly one. If we now use a radial
basis kernel and look for a classifier that separates the training points with margin γ
what is the V (γ) dimension of our classifier as a function of γ?

5. [10pt] Show a one dimensional example where adjusting the kernel width makes a
difference in terms of the margin that we can achieve for the points.

6


