
6.867 Machine Learning

Problem set 4 -solutions

Thursday, October 31

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). You may turn in answers to questions
marked “optional”— they will be read and corrected, but a grade will not be recorded for
them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write your
name on the top of every page.

Problem 1: Boosting

In this problem, we slightly modify the AdaBoost algorithm seen in class to better explore
some properties of the algorithm. Specifically, we no longer normalize the weights on the
training examples after each iteration. The modified algorithm, which is set to run for T
iterations, is shown in Algorithm 1.

Note that in the modified version, the weights associated with the training examples are
no longer guaranteed to sum to one after each iteration (and therefore can not be viewed
as a “distribution”), but the algorithm is still valid. Let us denote the sum of weights at

the start of iteration t by Zt =
∑n

i=1 w
(t)
i . At the start of the first iteration of boosting,

Z1 = n.

Let us now investigate the behavior of Zt, as a function of t.

1. [10pt] At the tth iteration we found a weak classifier that achieves a weighted training
error εt. Show that the choice of “votes” given by αt = 1

2
log 1−εt

εt
is optimal in the

1



Algorithm 1 AdaBoost: slightly modified version from the lecture (the weights are not
normalized to sum to one).

Input: Set of n labeled examples (x1, y1), . . . , (xn, yn), yi = ±1.

Set of associated weights w
(1)
1 , . . . , w

(1)
n , initially all w

(1)
i = 1.

Required number of iterations, T .
for t = 1, . . . , T do

Find a weak classifier ht, which outputs binary predictions ht(x) = ±1, such that its
weighted training error

εt =
1

Zt

n∑
i=1

w
(t)
i (1− δ (ht(xi), yi))

satisfies εt < 1/2.
Set the vote αt = 1

2
log 1−εt

εt
.

Update the weights : for each i = 1, . . . , n set

w
(t+1)
i = w

(t)
i e−yiαtht(xi)

end for
Output: the combined classifier defined by

ĥT (x) =
T∑

t=1

αtht(x)

2



sense that it minimizes Zt+1.

Advice: Look at Zt+1 as a function of α, and find the value for which the function achieves its
minimum. You may also find the following notational shorthand useful:

WI =
n∑

i=1

w
(t)
i

(
1− δ(yi, ht(xi))

)
, WC =

n∑

i=1

w
(t)
i δ(yi, ht(xi)),

where WC is the total weight of points classified by ht correctly, and WI the total weight of

misclassified points. δ(y, ht(x)) = 1 whenever the label predicted by ht is correct and zero

otherwise. The weights here are those available at the start of iteration t.

Answer: For an example i which is misclassified by ht, the weight becomes
w

(t)
i eαt , and for a correctly classified example xj the new weight is w

(t)
j e−αt .

Grouping the new weights of all the misclassified examples in one term and the
weights of the correctly classified examples in another term, we get

Zt+1(αt) = WIe
αt + WCe−αt .

Taking derivative w.r.t. αt and finding its zero yields

∂Zt+1

∂αt

= WIe
αt −WCe−αt = 0

⇒ e2αt =
WC

WI
⇒ αt =

1

2
log

WC

WI
.

Note that by definition, WC = Zt(1 − εt), WI = Ztεt, and we are done with
the proof.

2. [5pt] Show that the sum of weights Zt is monotonically decreasing as a function of t.

Answer: If we use Zt+1(αt) = WIe
αt + WCe−αt from the previous problem,

we see that Zt+1(0) = Zt. Thus

Zt+1 = min
αt

Zt+1(αt) < Zt+1(0) = Zt

whenever the minimizing αt is non-zero. Since αt = 0.5 ∗ log((1− εt)/εt), αt

is zero only when the error of the weak classifier is exactly chance.
We might also want to get an idea of how much Zt decreases as a function

of t. Using the exression for αt in terms of WC,WI found in the previous
question, we have

Zt+1 = WCe
1
2

log WC/WI + WIe
− 1

2
log WC/WI = 2

√
WIWC

We also know that Zt = WI + WC, and that WI < WC (by our choice of ht).
Thus, taking the difference between the positive Zt and Zt+1, we get

Z2
t − Z2

t+1 = W 2
C + W 2

I + 2WCWI − 4WCWI = (WC −WI)
2 > 0,

3



We know now that Zt decreases, and that our choice of αt is optimal for minimizing
Zt+1; but is this quantity useful in any way? It is useful in bounding how successive
boosting iterations reduce the training error.

3. [10pt] Show that the training error (the average number of misclassified training
examples) of the combined classifier after m iterations of boosting,

ĥm(x) =
m∑

t=1

αtht(x),

is bounded from above by Zm+1/n.

Advice: In the definition of the algorithm, the weights (and therefore Zt) are defined recursively.
You will find it helpful to “unroll” the definition, and write out the value of Zt+1 in terms of
the initial weights (which are all 1) and the subsequent updates, using α1, . . . , αm. You may
also find the following (simple) fact helpful: for any x ≥ 0, ex ≥ 1.

Answer: Following the advice, we find that

w
(m+1)
i = 1 · e−yiα1h1(x1) · . . . e−yiαmhm(x1) = e−yi

Pm
t=1 αtht(xi)

Let us look at an example xi which is misclassified by the combined classifier
ĥm. The value of −yi

∑m
t=1 αtht(xi) will be positive; thus, using the property

in the advice, we have

w
(m+1)
i = e−yi

Pm
t=1 αtht(xi) > 1.

Suppose there are N misclassified examples, out of total n examples in the
training set. Then,

Zm+1 =
∑

j: yj=ĥm(xj)

w
(m+1)
j +

∑

i: yi=−ĥm(xi)

w
(m+1)
i

≥
∑

i: yi=−ĥm(xi)

w
(m+1)
i

≥N,

where we have used the fact w
(m+1)
i > 1 for each of the N misclassified

examples. We get the result by dividing both sides of the inequality by n and
noting that N/n is the training error of the combined classifier.

We have shown that AdaBoost tries in each iteration to minimize an upper bound
on the training error of the combined classifier, and guarantees that this bound will
monotonically decrease as the algorithm proceeds. How much the bound decreases
at each iteration depends on the weighted training error of each weak classifier.

4



In the AdaBoost algorithm presented above, the vote αt assigned to a weak classifier
ht does not differentiate between the “directions” of mistakes it makes (misclassifying
a positive example as negative or vice versa). We already know that the magnitude
of the vote is related to the performance of the classifier - that is, a classifier which
achieves lower weighted training error will get a higher α. But what if ht makes
almost all of its mistakes on, say, negative examples? That is, for a training example
x if ht(x) = −1, with very high probability x is indeed negative, but if ht(x) = +1,
it is quite likely that in fact x is negative.

Recall that the vote αt measures the influence of ht in the final (combined) classifier.
Thus, it would make sense to assign a high vote to its decisions in the “direction” in
which ht makes fewer mistakes, and a lower vote to the opposite decisions. Algorithm
2 describes the modification in AdaBoost that allows for such a refinement.

Algorithm 2 Modified boosting algorithm, allowing different votes for positive and nega-
tive decisions
Input: Set of n labeled examples (x1, y1), . . . , (xn, yn), yi = ±1.

Set of associated weights w
(1)
1 , . . . , w

(1)
n , initially all w

(1)
i = 1.

Required number of iterations, T .
for t = 1, . . . , T do

Find a weak classifier ht, which outputs binary predictions ht(x) = ±1, such that its
weighted training error

εt =
1

Zt

n∑
i=1

w
(t)
i (1− δ (ht(xi), yi))

satisfies εt < 1/2
Set the votes αt, βt (see Question 5).
Update the weights : for each i = 1, . . . , n set

w
(t+1)
i = w

(t)
i e−yivt(xi)

where

vt(x) =

{
αt if ht(x) = 1,

−βt if ht(x) = −1.

end for
Output: the combined classifier defined by

ĥT (x) =
T∑

t=1

vt(x)

4. [3pt] Express Zt+1 as a function of αt, βt and the weights at the start of t-th iteration.

5



Answer: Using reasoning identical to that in Question 1, we note that the
new weight for a misclassified positive example xi (ht predicts negative) would
be

w
(t+1)
i = w

(t)
i e−yi(−βt) = w

(t)
i eβt ,

the weight on a correctly classified negative example xj (ht predicts positive)
would be

w
(t+1)
j = w

(t)
j e−yj(−βt) = w

(t)
j eβt ,

and so on. Let’s define W+− as the weight of examples labeled + (first sub-
script) for which ht predicts − (second subscript). Defining W++, W−+, and
W−− analogously, we can group the new weights into four terms:

Zt+1 = W
(t)
++e−αt + W

(t)
+−eβt + W

(t)
−−e−βt + W

(t)
−+eαt .

Note that whether the term has αt or βt depends on the second subscript of
the preceding weight.

5. [12pt] Fill in the missing part in the algorithm above. That is, find the rules for
computing αt and βt that would minimize Zt+1. You may use the following notational

shorthands: W
(t)
++ is the total weight (under the weights active at the beginning of

the t-th iteration) of the positive examples that are classified as positive by ht; W
(t)
+−

is the total weight of the positive examples misclassified by ht; and similarly defined
W

(t)
−− and W

(t)
−+.

Answer: Let us first find the partial derivatives of Zt+1 w.r.t. the votes:

∂Zt+1

∂αt

= −W
(t)
++e−αt + W

(t)
−+eαt ,

∂Zt+1

∂βt

= −W
(t)
−−e−βt + W

(t)
+−eβt .

Setting these to zero and manipulating the equations in exactly same way as
in Question 1, we get the rules

αt =
1

2
log

W
(t)
++

W
(t)
−+

,

βt =
1

2
log

W
(t)
−−

W
(t)
+−

,

which corresponds to our intuitive objective: larger αt means that out of all
examples classified as +1 many are true positives.

6



Problem 2: Complexity

Here we try to understand a bit better some implications of the fact that the feature vectors
corresponding to the radial basis kernel are functions (living in an infinite dimensional
space). It turns out that the VC-dimension of the classifier that uses a radial basis kernel
is infinite. We can actually make a bit stronger statement: with a radial basis kernel we
can perfectly separate any finite set of distinct training points. Why is this a stronger
statement? To claim that the VC-dimension of a classifier is n we only need to find some
set of n training points that we can shatter; this need not hold for all sets of n points.

To get started we’ll assume that we have a set of n points in Rd. The dimension d is
assumed to be finite and, perhaps surprisingly, plays no role in the argument. We also
make the critical assumption that all the training points are distinct. The radial basis
kernel we use has the following form:

K(x,x′) = exp{− 1

2σ2
‖x− x′‖2 }

where σ2 is a width parameter specifying how quickly the kernel vanishes as the points
move further away from each other. All of our results hold for any positive finite value
of σ2. In other words, whether or not we’ll be able to perfectly separate the training
points has nothing to do with the kernel width. The kernel width does affect generalization
performance, however.

1. [15pt] Let’s proceed in stages. To make things easier we are going to prove a bit
stronger result than necessary. In particular, we’ll show that

minimize
1

2
‖w‖2 subject to yiw

T φ(xi) = 1, i = 1, . . . , n

has a solution regardless of how we set the ±1 training labels yi. You should convince
yourself first that this is consistent with our goal. Here φ(xi) is the feature vector
(function actually) corresponding to the radial basis kernel. Our formulation here is
a bit non-standard for two reasons. We try to find a solution where all the points
are support vectors. This is not possible for all valid kernels but makes our life easier
here. We also omit the bias term since it is not needed for the result.

Introduce Lagrange multipliers for the constraints similarly to finding the SVM solu-
tion (see also the tutorial on Lagrange multipliers distributed along with the lecture
slides) and show the form that the solution ŵ has to take. You can assume that w
and φ(xi) are finite vectors for the purposes of these calculations. Note that the La-
grange multipliers here are no longer constrained to be positive. Since you are trying
to satisfy equality constraints, the Lagrange multipliers can take any real value.

We are after ŵ as a function of the Lagrange multipliers. (this should not involve
lengthy calculations).

7



Answer: We introduce a Lagrange multiplier αi for each constraint and add
these to the minimization objective. As a result we will minimize the uncon-
straint objective

J(w, α) =
1

2
‖w‖2 −

n∑
j=1

αj(yjw
T φ(xj)− 1)

with respect to w and try to maximize it with respect to the Lagrange mul-
tiplers (so as to enforce the classification constraints). Note that when the
classification constraints are satisfied the terms that we added to the objective
vanish. On the other hand, if we set w to a value that does not satisfy the
constraints then will choose αi (any real value) so that J(w, α) = ∞ since we
are maximizing the objective with respect to αi.

We can now take the derivative of J(w, α) with respect to w and set it to
zero. This will give us ŵ as a function of α’s:

∂

∂w
J(w, α) = w −

n∑
j=1

αjyjφ(xj) = 0

which immediately gives ŵ =
∑n

j=1 αjyjφ(xj).

2. [5pt] Put the resulting solution back into the classification (margin) constraints and
express the result in terms of a linear combination of the radial basis kernels.

Answer: Here we plug in the above solution to each constraint yiw
T φ(xi) = 1

giving

yi

(
n∑

j=1

αjyjφ(xj)

)T

φ(xi) = yi

(
n∑

j=1

αjyjφ(xj)
T φ(xi)

)
(1)

= yi

(
n∑

j=1

αjyjK(xj,xi)

)
= 1 (2)

3. [5pt] Indicate briefly how we can use the following Michelli theorem to show that any
n by n kernel matrix Kij = K(xi,xj) for i, j = 1, . . . , n is invertible.

Theorem: If ρ(t) is monotonic function in t ∈ [0,∞), then the matrix ρij = ρ(‖xi −
xj‖) is invertible for any distinct set of points xi, i = 1, . . . , n.

Answer: We can express K(xi,xj) as a monotonic function of the distance
‖xi − xj‖:

Kij = K(xi,xj) = exp{− 1

2σ2
‖xi − xj‖2 } = ρ(‖xi − xj‖)

where ρ(z) = exp(−z2/2). Here ρ(z) is a monotonically decreasing function
of z (right half of a Gaussian) and therefore qualifies for the theorem.

8



4. [10pt] Based on the above results put together the argument to show that we can
indeed find a solution where all the points are support vectors.

Answer: Let’s first write the classification constraints in terms of the kernel
matrix Kij evaluated at the available points:

yi

n∑
j=1

αjyjKji = 1, for all i

or, equivalently, as

yi

n∑
j=1

Kijyjαj = 1, for all i

since Kij = Kji. To put these constraints in a matrix form, we can define
a diagonal matrix Y , where Yii = yi, and Y −1 = Y . Thus, in a matrix
form, the above constraints are Y K(Y α) = 1, where α = [α1, . . . , αn]T and
1 = [1, . . . , 1]T . Since we have already established that K is invertible, we get
an explicit solution for α. Specifically, α̂ = (Y KY )−11 = Y K−1Y 1.

Of course the fact that we can in principle separate any set of training examples
does not mean that our classifier does well (on the contrary). So, why do we use the
radial basis kernel? The answer is given by the more refined notions of VC-dimension
such as the V (γ) dimension. This refined notion of complexity takes into account the
margin that we achieve for the linear classifier in the feature space. In other words,
V (γ) is defined as the number of points that we can shatter with margin γ. γ here is
the distance of the closest training point to the linear boundary in the feature space
(the distance is measured in the feature space).

This is useful in our case here since we know that if the feature vectors lie within a
sphere of radius R then V (γ) ≤ R2/γ2. The larger the margin requirement, the fewer
points we can shatter. This is particularly convenient for radial basis kernels since

φ(x)T φ(x) = K(x,x) = 1

In other words, the feature vectors have norm exactly one. If we now use a radial
basis kernel and look for a classifier that separates the training points with margin γ
what is the V (γ) dimension of our classifier as a function of γ?

Answer: For us to use the bound V (γ) ≤ R2/γ2 we have to know the
radius of the smallest sphere containing the points. This sphere needs to be
in the feature space where our classifier is linear. For a radial basis kernel
φ(x)T φ(x) = 1 and thus all the feature vectors are contained within a unit
sphere. Therefore R = 1 in the bound and we get

V (γ) ≤ 1/γ2

9



5. [10pt] Show a one dimensional example where adjusting the kernel width makes a
difference in terms of the margin that we can achieve for the points.

Answer: If we only have two training examples with opposite labels, then we
would try to set the kernel width to the smallest possible value or zero. This
is because any influence that the kernel permits between the points (the size
of K12 = K(x1,x2)) is in this case necessarily destructive for classification.

Let’s see how this works a bit more formally (not required from your per-
spective). Since the points are separable, the margin is given by 1/‖ŵ‖, where
ŵ can be expressed in terms of the kernel and the Lagrange multipliers α̂. In
this simple case we know that both points will become support vectors and
therefore satisfy the margin constraints with equality. To get the solution α̂ we
can use our earlier result: α̂ = Y K−1Y 1, where K is a 2 by 2 matrix

K =

[
1 K12

K12 1

]
, and K−1 =

1

1−K2
12

[
1 −K12

−K12 1

]
,

where K11 = K22 = 1 for the radial basis kernel and K12 = K21 by symmetry.
The kernel width only affects the value of K12 (larger width, larger value). We
can evaluate the margin exactly in this simple setting

1/‖ŵ‖ = (‖ŵ‖2)−1/2 =
(
(Y α̂)T K (Y α̂)

)−1/2
(by definition of ŵ) (3)

=
(
(K−1Y 1)T K (K−1Y 1)

)−1/2
(since Y α̂ = K−1Y 1) (4)

=
(
1T Y K−1Y 1

)−1/2
(since K−1KK−1 = K−1) (5)

=

(
1

1−K2
12

1T Y

[
1 −K12

−K12 1

]
Y 1

)−1/2

(6)

=

(
1

1−K2
12

1T

[
y1y1 −y1y2K12

−y2y1K12 y2y2

]
1

)−1/2

(7)

=

(
1

1−K2
12

1T

[
1 K12

K12 1

]
1

)−1/2

(8)

=

(
1

1−K2
12

(2 + 2K12)

)−1/2

(9)

=

(
1

(1 + K12)(1−K12)
(2 + 2K12)

)−1/2

(10)

=

(
2

(1−K12)

)−1/2

=
√

(1−K12)/2 (11)

So, to maximize the margin we’d like K12 to be as small as possible. This
corresponds to setting the kernel width to zero.

It is actually more common that we can improve the margin by increasing
the width. Points that are close with the same label can help each other’s
classification when K(xi,xj) is reasonably large.

10


