
6.867 Machine Learning

Problem set 5 - solutions

Thursday, November 14

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). You may turn in answers to questions
marked “optional”— they will be read and corrected, but a grade will not be recorded for
them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write your
name on the top of every page.

Problem 1: model selection

Minimum description length principle is a bit unwieldy to follow in practice. This is because
we would have to find discretized estimates for the parameters, find the right resolution
at which to discretize them and so on. A simple alternative is the following asymptotic
approximation:

DL ≈ −
(

log p(data|θ̂)− d

2
log(n)

)
(1)

where d is the dimension of the parameter space (the number of parameters) and θ̂ is the
maximum likelihood parameter estimate. This approximation is valid for large n. We have
taken the minus sign outside the terms so as to deal with log-probabilities rather than bits
(negative log-probabilities). The criterion inside the brackets is also known as the Bayesian
Information Criterion or BIC for short. We will use the BIC criterion here and select the

1

model – a family of distributions – with the maximum value of

log p(data|θ̂)− d

2
log(n) (2)

Since this is justified as an asymptotic criterion, it is useful to see whether it is at all
appropriate when n is not very large. We’ll try to verify this in the context of simple
Gaussians.

1. [10pt] Let’s start by deriving the log-likelihood of data for a Gaussian with maximum
likelihood parameters. By ignoring constant terms – terms not depending on the mean
or the covariance – we get

log p(data|θ) =
n∑

i=1

log p(xi|µ, Σ) (3)

=
n∑

i=1

(
−1

2
(xi − µ)T Σ−1(xi − µ)− 1

2
log(|Σ|)

)
(4)

= −1

2

n∑
i=1

(xi − µ)T Σ−1(xi − µ)− n · 1

2
log(|Σ|) (5)

= −1

2
n · Trace

(
1

n

n∑
i=1

(xi − µ)T Σ−1(xi − µ)

)
− n · 1

2
log(|Σ|) (6)

where the trace of a square matrix A is the sum of its diagonal components. In other
words, Trace(A) =

∑d
j=1 Ajj. The nice property about trace is that Trace(AB) =

Trace(BA) whenever BA makes sense as a matrix product. We were able to introduce
trace above since (xi − µ)T Σ−1(xi − µ) is a scalar (or 1 by 1 matrix). By inserting
maximum likelihood parameter estimates for the mean and the covariance, simplify
the above expression to make it only a function of n, the dimension d of x, and the
log-determinant of the covariance matrix. The result is log p(data|θ̂) that we need for
BIC.

Answer: First, let us manipulate the expression in Eq. (6) a bit to simplify
our task. Using Trace(AB) = Trace(BA) we get

log p(data|θ) = −n

2
Trace

(
Σ̂−1

[
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T

])
−n · 1

2
log(|Σ̂|),

(7)
where the maximum likelihood estimate for the mean is

µ̂ =
1

n

n∑
i=1

xi, (8)

2

and for the covariance

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T . (9)

Now note that

Σ̂−1

[
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T

]
= I, (10)

where I is the d-dimensional identity matrix, so that

log p(data|θ) ∝ −n

2
Trace(I)− n · 1

2
log(|Σ̂|) = −n

2

(
d + log |Σ̂|

)
(11)

2. [10pt] Your result holds even if we restrict the covariance matrix to be diagonal.
For a Gaussian, this restriction means that we assume that the components of x are
independent. The maximum likelihood estimate of the diagonal covariance matrix
will be diagonal, of course. Write down the expressions for the BIC scores for the
two models: model 1 with full covariance and model 0 with diagonal covariance.

Answer: We need to count the parameters in each model. Both models use
a d-dimensional µ̂, which contributes d parameters. As for the covariance,
model 0 has only d elements in the covariance matrix to be determined (the
main diagonal), whereas model 1 has d(d + 1)/2 parameters; note that this is
not d2 since the covariance matrix must be symmetric, and thus is completely
determined by the elements on the main diagonal and above. Let C1 and C0

be the ML covariance estimates for model 0 and model 1, t be the size of the
data set, and d the dimension of the data. Then the BIC scores for the two
models, written in Matlab notation, are

bic_0 = -0.5*n*(d+log(det(C0)))-0.5*(d+d)*log(t);

bic_1 = -0.5*n*(d+log(det(C1)))-0.5*(d*(d+1)/2+d)*log(t);

Let’s explore a little how well the criterion works with small sample sizes. Specifically,
we wish to test whether the complexity penalty is appropriate. We will generate data
from a Gaussian that conforms to the simpler diagonal covariance and see whether
the criterion allows us to select the simpler alternative. The more complex model
(full covariance) surely provides a better fit in terms of the data likelihood. The
complexity penalty then has to be large enough to overcome this bias.

Even if we test the criterion only one way, there are still two possible variations we
can perform in evaluating the criterion. One is the sample size, the other is the
dimensionality of the examples. We assume that the true data is generated from a

3

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

160

180

200

d

n m
in

(a) Scatter plot for 1.3

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

d

m
ea

n
n m

in

(b) The mean of 1(a)

Figure 1: Problem 1.3

Gaussian with zero mean and identity covariance (the exact values of the diagonal
entries of the true covariance matrix are secondary).

We have provided you with a MATLAB routine n min = bictest(d) which takes the
dimension d as an argument and returns a measure of how many examples we need
before the BIC criterion consistently picks the right model. Since BIC is asymptot-
ically correct this will happen eventually. The routine generates a large training set
at random and incorporates examples from this set incrementally in the evaluation of
the BIC scores. As a result we get a sequence of BIC scores which are evaluated on
the basis of successively larger subsets of the training set. We then find the number
of examples (for this choice of the training set) that are needed before the BIC scores
remain consistent with the correct model for the remaining examples in the large set.
This measure is a random variable since it is based on the randomly chosen training
set. You need to call this routine repeatedly to get a better idea of the number of
examples that are required for BIC to work properly.

Before using the code, however, you will have to insert the formulae for the BIC
scores corresponding to the two Gaussian models (this piece of the code is missing).
Recall that model 0 assumes a diagonal covariance matrix while model 1 permits a
full covariance matrix.

3. [5pt] Plot samples of the number of points (that are needed for BIC to work properly)
as a function of the dimension d. Use d = 2, . . . , 10.

Answer: The scatter plot (for 100 trials for each d) is shown in Figure 1(a).
The mean of the 100 trials for each d is plotted in Figure 1(b).

4

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

d

n m
in

Figure 2: Demonstration of BIC performance when true model is model 1; results of 100
trials are shown. For some d, model 1 was never selected based on up to 200 data points

4. [10pt] Briefly explain why the scatter plot looks the way it does.

Answer: At the first glance, it appears from the plot that the higher the
dimension, the “easier” it is for BIC to pick the right model. However, note
that the experiment done in bictest is somewhat one-sided: namely, we only
test how soon model 0 is chosen when it is the correct model. But what
happens when the correct model is model 1? Figure 2 shows a scatter plot
of a similar experiment where bictest was modified to generate data from a
particular model 1. We see that as the dimension becomes higher, it becomes
more difficult for the BIC to pick model 1.

The number of parameters is roughly quadratic in the dimension for model
1, and linear for model 0. It therefore takes much more data points to estimate
the covariance of model 1. For higher dimensions, the penalty (which is linear
in the complexity of the model) becomes too high, and outweighs the (slightly)
increased likelihood of model 1. So what is happening in Figure 1 is that for
higher dimension, BIC tends to pick model 0 (regardless of whether that is the
correct model), unless we provide a lot of data points.

Of course, since BIC is asymptotically guaranteed to pick the right model,
if we increase the number of data points for any fixed input dimension, model
1 will eventually be selected.

Problem 2: monotonicity of the EM algorithm

We try to understand here why the EM algorithm works. The crucial property of the
algorithm is that it monotonically increases the log-likelihood of the data. This is a very
convenient property in practice. For example, if you happen to have a bug in the code it is

5

unlikely that the log-likelihood would be monotonic until convergence. Monotonicity of the
log-likelihood therefore serves as a good test of whether the code is correct. In addition,
when solving large problems in practice, where even a single EM iteration may take a
long time (hours), it is quite reasonable that the time is spent on actually improving the
solution. It might be a bit frustrating if an iteration involving hours of computation would
occasionally decrease the log-likelihood.

Suppose now that we have observed D = {x1, . . . ,xn} and wish to estimate an m-component
Gaussian mixture model:

p(x|θ) =
m∑

j=1

pjp(x|µj, Σj) (12)

where the parameters θ refer to all the parameters in the mixture model

θ = {p1, . . . , pm, µ1, . . . , µm, Σ1, . . . , Σm} (13)

and

p(x|µj, Σj) =
1

(2π)d/2|Σj|1/2
exp{−1

2
(x− µj)

T Σ−1
j (x− µj)} (14)

where d is the dimensionality of the examples x; its value plays no role in establishing the
monotonicity property.

1. [5pt] Let’s start by examining what the gradient of the log-likelihood looks like. The
log-likelihood function is given by

l(θ; D) =
n∑

i=1

log p(xi|θ) (15)

Take the derivative of the log-likelihood with respect to the mean µk (the kth Gaus-
sian) and set the derivative to zero. Simplify the result so that it reads like an update
equation: µk = Express the right hand side of this equation in terms of the
posterior weight of the kth component

n̂k =
n∑

i=1

P (k|xi, θ) (16)

and the corresponding weighted posterior mean of the examples

1

n̂k

n∑
i=1

P (k|xi, θ)xi (17)

Sure looks like an EM step.

6

Answer: The derivative of the likelihood (wothout taking the log) on a single
data point xi w.r.t. µk is

∂

∂µk

p(xi|θ) =
∂

∂µk

m∑
j=1

pjp(xi|µj, Σj)

= pkp(xi|µk, Σk)Σ
−1
k (xi − µk).

Using this result, we easily get

∂

∂µk

l(θ; D) =
n∑

i=1

∂

∂µk

log p(xi|θ)

=
n∑

i=1

1

p(xi|θ)pkp(xi|µk, Σk)Σ
−1
k (xi − µk)

=
n∑

i=1

P (k|xi, θ)Σ
−1
k (xi − µk). (18)

(recall the expression for the posterior P (k|bxi, θ) from, e.g., Lecture 12).
Equating (18) to zero, moving µk to the left hand side, dividing by

n∑
i=1

P (k|xi, θ) = n̂k, (19)

and multiplying both sides by Σk, we get

µk =
1

n̂k

n∑
i=1

P (k|xi, θ)xi. (20)

2. [5pt] Let’s try to interpret the previous update as a Gradient ascent. In other words,
we need to find the step size ε so that the update

µk ← µk + ε
∂

∂µk

l(θ; D) (21)

gives exactly the update you just derived above (the right hand sides should match).
What is the step size ε?

Answer: Using the above expression for ∂l(θ; D)/∂µk, equating the right
hand sides of the two update rules, and using a simple identity

µk =
1

n̂k

n∑
i=1

P (k|xi, θ)µk,

7

we get

ε

n∑
i=1

P (k|xi, θ)Σ
−1
k (xi − µk) = −µk +

1

n̂k

n∑
i=1

P (k|xi, θ)xi

=⇒ εΣ−1
k

n∑
i=1

P (k|xi, θ)(xi − µk) =
1

n̂k

n∑
i=1

P (k|xi, θ)(xi − µk)

=⇒ ε =
1

n̂k

Σk (22)

So, we have expressed the EM update as a gradient ascent learning rule with a
rather large step size that changes from one iteration to another. But how could this
possibly lead to a monotonically increasing log-likelihood? We need to explore this a
bit further.

We will rely on the following result:

m∑
j=1

q(j|i) log

(
pjp(xi|µj, Σj)

q(j|i)
)
≤ log

(
m∑

j=1

pjp(xi|µj, Σj)

)
= log p(xi|θ) (23)

which holds for any choice of q(j|i) ≥ 0 provided that
∑m

j=1 q(j|i) = 1 for each i.

3. [5pt] Show that the inequality becomes an equality if we set q(j|i) equal to the
posterior probability: q(j|i) = P (j|xi, θ). This also turns out to be the only choice
of q(j|i) that attains the equality.

Answer: First of all, the suggested choice of q(j|i) clearly satisfies the con-
straint

∑m
j=1 q(j|i) = 1. Moreover, recall again the expression for the posterior:

q(j|i) = P (j|xi, θ) =
pjp(xi|µj, Σj)∑m

k=1 pkp(xi|µk, Σk)

From here, we get

m∑
j=1

q(j|i) log

(
pjp(xi|µj, Σj)

q(j|i)
)

=
m∑

j=1

q(j|i) log

(
pjp(xi|µj, Σj)

∑m
k=1 pkp(xi|µk, Σk)

pjp(xi|µj, Σj)

)

= log

(
m∑

k=1

pkp(xi|µk, Σk)

)
m∑

j=1

q(j|i)

= log

(
m∑

k=1

pkp(xi|µk, Σk)

)
= log p(xi|θ)

(24)

8

4. [5pt] Now let

J̃(Q; θ) =
n∑

i=1

m∑
j=1

q(j|i) log

(
pjp(xi|µj, Σj)

q(j|i)
)

(25)

where for simplicity we use Q to refer to all q(j|i). We have simply added a sum-
mation over the the training examples. By relying on the previous result provide the
argument for why

J̃(Q; θ) ≤ l(θ; D), and max
Q

J̃(Q; θ) = l(θ; D) (26)

where the maximization is taken with respect to all q(j|i) (which can be chosen
independently for each different i).

Answer: Recall that l(θ; D) =
∑n

i=1 p(xi|θ). From the previous result, for
all i = 1, . . . , n we have for the i-th terms in J and l

m∑
j=1

q(j|i) log

(
pjp(xi|µj, Σj)

q(j|i)
)
≤ log p(xi|µi, Σi),

and the required inequality between the sums follows.
Consequently, when q(j|i) are the posteriors, we get an equality for the i-th

term; given the inequality, this setting attains the largest possible value for that
term, among all setting of Q. Maximizing each term in the sum will maximize
the total - therefore, setting q(j|i) to the posteriors for all j, i will attain the
maximal value, which is l(θ; D).

5. [5pt] We are almost there. Let θt be our current setting of the parameters in the
mixture model. We use Qt to refer to the corresponding setting qt(j|i) = P (j|xi, θ

t).
Finding Qt represents the E-step of the EM algorithm, where we evaluate the poste-
rior probabilities over the mixture components. Let’s look at the M-step in our new
formulation. Given Qt, show that the parameters θt+1 that we would get by maximiz-
ing J(Qt; θ) with respect to θ correspond exactly the M-step of the EM algorithm. It
suffices to show this for µk only (as in the case of gradient ascent above).

9

Answer: Here we have qt(j|i) = P (j|xi, θ
t). Thus

∂

∂µk

J(Qt; θ) =
∂

∂µk

n∑
i=1

m∑
j=1

qt(j|i) log

(
pjp(xi|µj, Σj)

qt(j|i)
)

(27)

=
n∑

i=1

qt(k|i) ∂

∂µk

log p(xi|µk, Σk) (28)

=
n∑

i=1

qt(k|i)Σ−1
k (xi − µk) (29)

=
n∑

i=1

P (k|xi, θ
t)Σ−1

k (xi − µk) = 0 (30)

where we can now solve for µk as before. Note that P (k|xi, θ
t) does not

depend on µk; it is evaluated with µt
k, the setting we obtained during the

previous M-step.

6. Based on our derivations above, we finally have the following chain of inequalities:

l(θt; D) = J(Qt; θt)

M-step︷ ︸︸ ︷
≤ J(Qt; θt+1)

E-step︷ ︸︸ ︷
≤ J(Qt+1; θt+1) = l(θt+1; D) (31)

This ensures a monotonic increase in the log-likelihood.

7. [5pt] Provide a brief summary argument explaining this result and how we get it on
the basis of the previous ones.

Answer: The chain starts from J(Qt; θt) which, as we have shown in question
4, is equal to the log-likelihood of the data under the model in iteration t. In
the M-step, as we figured in question 5, we find the value of θt maximizing
J(Qt; θt+1); this value must be at least as large as J(Qt; θt). Having fixed
θt+1, in E-step we find Qt+1 which, as we know from question 4, maximizes
J(Qt+1; θt+1) - hence the last inequality. As a result, the log-likelihood of the
data given θt+1 is greater or equal to the log-likelihood given θt - which means
that each iteration of EM updates parameters in a way that does not decrease
the likelihood of the data.

It is worthwhile to note that the EM algorithm is not restricted to mixture models although
we have introduced the algorithm in this context. It is applicable more generally to estima-
tion problems where the data is incomplete. Our available data here was also incomplete
since we only had x and not the component that x were generated from. More precisely,
the variable specifying the mixture component was unobserved (not included in the data).

10

Problem 3: EM and mixture of Gaussians

In this problem we will investigate properties of EM algorithm applied to the problem of
estimating mixture of Gaussians model. We will use a set of 2D data points, provided in
MOGdata.mat. The implementation of regularized EM for mixture of Gaussians estimation
is provided in em mix.m

The command to run EM is

[param,history,ll] = em_mix(data,m,eps);

where the input points are given as rows of data, and m is the number of component is the
estimated mixture. In the output, param is a cell array with m elements. Each element is
a structure with the following fields:

mean - the resulting mean of the Gaussian component,

cov - the resulting covariance matrix of the component,

p - the resulting estimate of the mixing parameter.

The value of param is updated in every iteration of EM; the output argument history

contains copies of these subsequent values of param and allows to analize our experiments.
Finally, ll is the vector t-th element of which is the value of regularized log-likelihood over
the data achieved after t iterations (i.e. the last element of ll is the final log-likehood of
the fitted mixture of Gaussians). The EM is programmed to stop when the relative change
in the log-likelihood between iteration falls below a small threshold.

1. [10pt] Run EM with 4 components on the data. Plot the graphs of estimated mixing
probabilities for each component as a function of EM iterations. Compare the con-
vergence speed of the mixing probabilities for the different components. Repeat this
experiment at least 10 times (recall that the EM is initialized randomly, and therefore
its results are a random variable), to evaluate the tendency. Turn in a typical plot
(which should contain 4 lines, one for each mixing probability) and explain the ob-
served behavior; in particular, if the parameters for some of the Gaussian components
converge faster, point that out and explain why it happens.

Answer: Figure 3(a) shows the results of a typical run of EM, and in Figure
3(b) the convergence of the 4 mixing probabilities to their eventual values is
plotted. The mixing probabilities of the two components that end up being
well-separated converge very early, and almost do not change for most of the
run. The parameters for the two components that are close – the ones with
means around (-1,-1) and (.5,.5) – converge much more slowly. This is because
the separation of these two components is more difficult – the estimated values
of the posteriors of these two components on many points remain relatively
similar for many iterations.

11

−4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

5

(a) An example run, 3.1

component around (−1,−1) (blue)

component around (.5,.5) (red)

component around (4,2) (green)

component around (2,−2) (cyan)

(b) Convergence of mixing parameter esti-
mates

Figure 3: Problem 3.1; other results are possible and will occur, but this should be a typical
case.

The data in this problem was actually generated with 4 Gaussian components. How-
ever, in an unsupervised setting we can’t know that and must set the number of
component based on the data and the results of EM. This is a case of model selec-
tion, and we will attempt to approach it using Bayesian Information Criterion (BIC)
(see the first problem).

2. [5pt] For m from 1 to 6, run EM with m components on the data from previous
question, and compute the BIC score of each model. Repeat the experiment at least
10 times. Which model tends be selected in the majority of cases?

Answer: Let d be the dimension of the data. Mixture of m Gaussians with
arbitrary covariances has the following parameters: md elements in the means,
md(d+1)/2 elements in the covariance matrices, and m−1 mixing probabilities
(the m-th one is determined by the others). Therefore, the BIC score of a
mixture of Gaussians can be computed as

log p(x|θ̂)− [m(d + d(d + 1)/2 + 1)− 1]
log n

2
. (32)

Based on score so computed, the model most often selected is the mixture
of 3 Gaussians (i.e. one component less than in the true underlying model).
A typical result of fitting a mixture of 3 Gaussians to the data has a single
Gaussian “responsible” for the cloud of points around zero; in most cases,
the improvement in likelihood gained by “splitting” this component into two
Gaussians is not “worth” the penalty imposed by BIC.

12

3. [10pt] Now repeat the experimental setup from the previous question with data sets
provided in MOGsmall.dat and MOGlarge.dat, which have 40 and 8000 examples
respectively. Those data sets were generated by the same 4-component model as
MOGdata. Which models tend to be selected? Do the results differ from model
selection in the preceding question? Explain why or why not.

Answer: Recall that BIC is guaranteed to select the correct model, but only
asymptotically. With only 40 examples, it tends to pick the simplest models,
with 1 or 2 components, since the penalty tends to outweigh the likelihood gain
for the higher order models (“overpenalizing”). With the largest data set, the
asymptotic properties of BIC begin to be felt in practice, and it typically picks
the right model (with 4 components).

13

