
6.867 Machine Learning

Problem set 6 - solutions

Wednesday, November 27

What and how to turn in?

Turn in short written answers to the questions explicitly stated, and when requested to
explain or prove. Do not turn in answers when requested to “think”, “consider”, “try” or
“experiment” (except when specifically instructed). You may turn in answers to questions
marked “optional”— they will be read and corrected, but a grade will not be recorded for
them.

Turn in all MATLAB code explicitly requested, or that you used to calculate requested
values. It should be clear exactly what command was used to get the answer to each
question.

To help the graders (including yourself...), please be neat, answer the questions briefly, and
in the order they are stated. Staple each “Problem” separately, and be sure to write your
name on the top of every page.

Problem 1: Clustering

In this problem we will experiment with the spectral clustering algorithm, and explore
its properties and the influence of its parameters. A Matlab implementation of spectral
clustering is provided in spectral.m. You can call it as

labels = spectral(X,k,beta);

where X is the 2D data, k is the number of neighbors to use in the neighborhood graph,
and beta is the weight falloff parameter. The default values for k is 3, for beta 1. Use
spectral to experiment with the algorithm, and to test your hypotheses regarding the
questions.

You may also find use for the little function

X = mkdata(m,n);
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that generates random data points, from m Gaussian distributions, with n points from each.
Such data typically has m sets of points that form natural clusters.

The code is written to perform binary clustering; let us first see how the algorithm deals
with the data where there are indeed two clusters.

1. [5pt] What will typically happen if only a single nearest neighbor is used to create
the graph (i.e. k=1)? Explain why that happens.

Answer: The neighborhood graph will typically not be connected. Therefore,
the basic operating assumption that motivates spectral clustering (higher prob-
ability of paths within a cluster than paths across the clusters in the random
walk) breaks down. As a result the cluster assignments look “chaotic” and bear
little connection to the underlying structure of the data (one would expect a
reasonable clustering result to somewhat reflect the two Gaussian components).

2. [5pt] What happens if beta is set to a very large value (say, 100), when k is reasonable
- say, 3? Explain.

Answer: The clusters are assigned spuriously, with little relation to the un-
derlying structure.

The value of β influences the slope of the decaying weight on an edge
as a function of the distance. Very low (close to zero) β means the weight
is almost constant, and depends very little on the distance; very high β, on
the other hand, means the weight falls off rapidly as the distance increases.
With β = 100, the probability of transition from x to any of its neighbors
is negligibly small (assuming we include self-transition as a possibility), and,
more importantly, the relative difference between these probabilities for different
points and for different neighbors of the same point are vast (many orders of
magnitude). Such weights carry little information about the arrangement of
the points to be clustered.

Now assume that there are in fact three clusters in the data. In the form given to you, the
clustering algorithm of course can not discover the three clusters (since it only looks for
two).

3. [5pt] How will the algorithm, as given to you, behave on the data with three clusters?
Explain.

Answer: There are two main possibilities. To simplify our discussion, let us
denote the three components by A,B and C. One possibility is to have all the
points assigned to a single cluster. This will happen when each component has

2



sufficiently many points nearby the other components thus creating significant
transitions across the components in the random walk.

In the second typical case the data from two of the Gaussian components
(say, A and B) are assigned to one cluster and the remaining component C is
a cluster of its own. This happens when there are significant probabilities of
transition between the points in A and B, but not between A and C or B and
C.

Of course, one will occasionally encounter other scenarios. For instance,
when the number of the data points drawn from each Gaussian is low, the
neighborhood graph may be disconnected, often leading to a separate con-
nected component per Gaussian. However, to use this the algorithm would
have to include either a simple preprocessing stage, which the current imple-
mentation does not do.

4. [10pt] Modify the algorithm in order to find the three clusters. Note that deciding
how many clusters are in fact present in the data is an important problem in clus-
tering; you do not have to solve it, however - the modified algorithm should simply
assume there are three clusters. Explain your modifications, and turn in your code.

Answer: One could think of a few ways to handle the multiple cluster sit-
uation. Below we mention two of those; any sensible proposal was given the
credit. Note that we are not concerned here with the problem of finding the
number of clusters: we assume that the data is known to contain 3 clusters,
and we only need to find them.

One way is to implement a hierarchical clustering scheme, like the one
mentioned in lecture. Namely, once the original clustering algorithm finds the
two clusters, we can apply the clustering again within each cluster to search
for further subdivisions. This does not require any change in the code. Note
that unless some prior information is available on the size of the clusters, we do
not know which cluster should be subdivided. We can apply the algorithm on
both clusters, and the “right” one will produce a reasonable number of points
assigned to different clusters.

An alternative is to use the 2 eigenvectors v,u corresponding to the second
and third largest eigenvalues. The pair (vi, ui) defines a 2D mapping of the
data points. Typically the points are easily clustered in this 2D plane (using
some simple clustering method, such as k-means).
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Problem 2: HMM

One of the most notable contributions of HMM has been is speech recognition. In this
problem we will take a look at an application of HMM to a relatively simple problem in
speech – recognition of isolated words. We will focus on a “toy” version of this problem,
namely, we are only interested in understanding whether the input utterance (acoustic
speech signal) represents the word “four” or “five”.

We will be working with the Mel-frequency cepstral coefficients (MFCC) of the signal, which
are essentially the Fourier coefficients transformed in a way consistent with how the bio-
logical systems process acoustic information. You can find more about this representation
in the literature devoted to speech recognition; one reference is

L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition. Englewood Cliffs, NJ:
Prentice Hall, 1993.

The 13-element MFCC vectors are the observations xt in our model. The MFCC are
computed within sequential time windows of fixed size, and since the length of the utterance
varies from sequence to sequence , so does the number of observations. All the data used in
this problem is found in the file data45.mat. The data was collected from 8 male speakers,
each uttering the two words a number of times.The cell arrays train4,train5 contain in
each element (e.g. train4{j} a 13×T matrix of normalized MFCC, where T is the length
of the corresponding observation sequence.

Our HMM for each spoken digit will contain 5 hidden states. The states roughly correspond
to the phonemes (sounds) in the word; in our case, both “four” and “five” have three
phonemes, and we expect the states to model these phonemes, plus the “silent” segments
before and after the word. The transitions between states correspond to a sequential
process, and are constrained in the following way: from a state s, the model can only
transition to the state s + 1, no “skipping states” or going “backwards” is allowed. Figure
1(b) schematically shows the state transition diagram for this model.

Finally, we will model the probability density of observation (MFCC vectors) for each
state by a single multivariate (13-dimensional) Gaussian with full covariance. The model
is summarized in Figure 1. Before we proceed, it is important to note that this is an over-
simplified model, and the HMM typically used for similar task (isolated word recognition)
in speech would usually be more complex (larger number of states, observations modeled
by a mixture of Gaussians, etc.)

We will use a (slightly modified) subset of the Matlab HMM toolkit written by Dr. Kevin
Murphy; the original toolkit and many other useful software tools can be found at
http://www.ai.mit.edu/ murphyk/Software.
Extracting the archive HMM.zip or HMM.tar.gz will create a directory HMM; make sure you
include it in Matlab working path (use the addpath command).

1. [2pt] What aspect of the HMM captures the estimated durations of the word parts
(i.e., if one part usually takes longer time than another, how will this affect the HMM
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Figure 1: The HMM used in Problem 2

parameters)?

Answer: A part (phoneme) is modeled by a recurring state corresponding to
that part. The event of staying in the same state k at time t is a Bernulli
event, with probability P (st+1 = k|st = k) of success. The duration of the
part correspond to the length of a sequence of consecutive “successes” of
that process; longer expected duration therefore means a higher value of the
corresponding diagonal element of the transition probability matrix.

2. [3pt] Prove that if an entry i, j in the initial “guess” of the transition probability
matrix provided to the EM is set to zero, it will remain zero in the result obtained
with the EM.

Answer: It is sufficient to show that the property is preserved through a single
EM iteration. That is, we assume that in the beginning of iteration m, the
estimate P̂m(st+1 = j|st = i) = 0 (which is known to be true for m = 0), and
prove by induction. Let us start with the E-step. The value of ξl

t(i, j) is, by
definition,

ξl
t(i, j) = P̂m(st+1 = j|st = i)

αt(i)P̂
m(xt+1|j)βt+1(j)∑
k αt(k)βt(k)

= 0

for all training sequences l = 1, . . . , L and all t = 0, . . . , n. Therefore, in the
M-step

η̂(i, j) =
L∑

l=1

n∑
t=0

ξl
t(i, j) = 0,
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and consequently

P̂m+1(i, j) = η̂(i, j)/
∑

j′
η̂(i, j′) = 0.

3. [2pt] Precisely what constraints do the 5×5 transition probabilities matrix P (st+1|st)
and the 5-element initial state probabilities vector P0 have to satisfy in our model?

Answer: We always start from the first state - therefore the initial state
probabilities are

P0(st) = [1, 0, 0, 0, 0]T .

The constraints on the transitions dictate that the transition probabilities matrix
be in the form

P (st+1|st) =




p00 p01 0 0 0
0 p11 p12 0 0
0 0 p22 p23 0
0 0 0 p33 p34

0 0 0 0 1




4. [3pt] Using the implementation of the EM algorithm provided to you, estimate the
parameters of the two HMMs, based on the data in train4 and train5 respectively.
The function you should use is

[p0, pt, mu, sigma] = learn_ghmm(X, initP0, initPt);

The inputs to learn ghmm are the cell array of observation sequences X and the
values, respectively, of P0(i) and P (st+1|st) that the EM should use as the initial
guess. In the output, p0 is the estimated P0, pt the estimated transition probabilities
matrix P (st+1|st), and mu and sigma are the estimated parameters of the Gaussian
distributions of observations for each state (the Gaussian for state k is determined by
mu(:,k) and sigma(:,:,k)). Make sure you appropriately constrain the transition
matrix and the starting state probabilities, according to your answers to the previous
two questions.

Turn in the resulting transition probability matrix for digit “four”.

Answer: As usual with the EM, the results are non-deterministic due to
random initialization. The results we got were




0.9341 0.0659 0 0 0
0 0.9406 0.0594 0 0
0 0 0.9622 0.0378 0
0 0 0 0.9480 0.0520
0 0 0 0 1
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Having trained an HMM (estimated its parameters) we can apply it to various tasks related
to the spoken digit recognition. One of the main goals is, of course, classification - given an
unlabeled utterance, we would like to tell whether it is a “four” or a “five”. The cell array
test45 contains 252 MFCC representations of spoken digits; the true labels are given in
the array labels. We will now test how well our HMMs can classify these utterances. To
do so, we will need to use the function

loglikes = log_lik_ghmm(data, prior, transmat, mu, Sigma);

which takes the cell array data, the probabilities of the initial state prior, the transition
probability matrix transmat, and the parameters of observation densities mu,sigma, and
returns in loglikes(k) the log-likelihood of the observation sequence data{k} given the
HMM.

5. [5pt] Classify the utterances in test45 based on their log-likelihoods under the two
models. Explain in one or two sentences how you perform the classification and why it
makes sense (no need to turn in code). What is the misclassification rate on test45?

Answer: If we denote the two HMMs (corresponding to the two classes)
as M1 ahd M2, and assume that both digits are equally likely to occur, the
classification of the utterance D in the Bayesian formulation can be expressed
as finding

M∗ = argmax
M

p(D|M),

which corresponds to finding the model with higher log-likelihood for the data.
The trained HMMs perform remarkably well on this test set; in our experiments,
all the test utterances were classified correctly (misclassification rate zero).

Another possible use for HMMs can be to align two observation sequences. In the case of
speech analysis, this could mean marking the segments of the signal corresponding to the
same hidden state. For this part, you will need to use the function

path= viterbi_path(data, prior, transmat, mu, sigma);

which for the observation sequence data returns the most probable sequence of states,
found by Viterbi algorithm with the HMM described by prior,transmat,mu and sigma.
We will try this on just one example - a pair of utterances of the word “four”. The
original sampled audio signal is given in the vectors signal1, signal2, and the MFCC
representation in mfcc1, mfcc2. Note that these utterances (by different speakers) have
quite different lengths.

6. [3pt] Explain how the most probable sequence of states helps us to align the se-
quences.
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Figure 2: Spectrogram alignment using HMM; top - spectrogram of a signal, bottom -
the most likely sequence of states obtained by Viterbi. Parts corresponding to state 1 are
marked in the spectrograms.

Answer: From the most likely sequence, we can find the most likely location of
transition between states k and k +1. Having found those for both sequences,
we can align the data by matching these locations.

7. [7pt] Using Matlab function specgram, plot the spectrogram of each signal, and under
it plot the graph showing the states found by Viterbi algorithm (use the subplot

command). Assuming that the states roughly correspond to sounds, mark the areas
on the two spectrograms that probably correspond to the sound “f”. (Recall that
the observed sequences typically have a “silence” period in the beginning, which is
modeled by a separate hidden state).

Answer: Figure2 shows the resulting alignment. Under our model, ’f’ in both
“four” and “five” is supposed to be modeled by the second state (the first
state of the HMM models the initial silence).

We now turn to a more interesting task: separating words in a sequence. We will do it in
a simplified setting, for a sequence of words known to be either “four” or “five”. In order
to separate the words, we must model not only the separate words, but also the transition
between the words. Normally, these would be estimated based on a training set of word
sequences; here, we shall simply assume that the probability of leaving the final state of
the word and going to the initial state of the next word is 0.2, and that the probabilities
of “four” and “five” are equal.
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8. [5pt] Explain how a single HMM would combine the two individual HMMs; turn in
the initial state probabilities and the transition matrix of this combined HMM.

Answer: One can view this as an hierarchical model, in which we have two
meta-states, corresponding to the two digits. Under our assumptions, the
transition probabilities between all the meta-states are 1/2 (the next word is
equally likely to be “four” or “five”).

Let the states of the HMM trained for “four” be numbered 1 through 5,
and the states of the HMM for “five” 6 through 10. Then transitions between
the meta-states corresponds to transitions 5→1, 5→6, 10→1 and 10→6. We
are equally likely to start from either meta-state, which means starting from 1
or 6. To summarize, the (hand-crafted) parameters of the combined HMM, for
the particular results of training the 5-state HMMs,

P0 =




.5
0
0
0
0
.5
0
0
0
0




and

P (st+1|st) =




0.934 0.066 0 0 0 0 0 0 0 0
0 0.941 0.059 0 0 0 0 0 0 0
0 0 0.962 0.038 0 0 0 0 0 0
0 0 0 0.948 0.052 0 0 0 0 0

0.1 0 0 0 0.8 0.1 0 0 0 0
0 0 0 0 0 0.926 0.074 0 0 0
0 0 0 0 0 0 0.941 0.059 0 0
0 0 0 0 0 0 0 0.958 0.042 0
0 0 0 0 0 0 0 0 0.929 0.071

0.1 0 0 0 0 0.1 0 0 0 0.8




Finally, we need to define the probability densities of the observation for each
state; these, of course, correspond to the internal state, and thus are the same
as before. To summarize: the following Matlab code will set up the combined
HMM (assuming pt4,mu4,sigma4 are the estimated parameters of the HMM
for “four” and similarly for “five”):

>> p0=[.5 0 0 0 0 .5 0 0 0 0]’;

>> pt=[pt4 zeros(5,5);zeros(5,5) pt5];

>> pt(5,6)=.1;pt(5,1)=.1;pt(5,5)=.8;

9



>> pt(10,6)=.1;pt(10,1)=.1;pt(10,10)=.8;

>> mus = [mu4 mu5];

>> sigmas(:,:,1:5)=sigma4;

>> sigmas(:,:,6:10)=sigma5;

9. [5pt] We will work with 4 sequences of two spoken digits seq1,...,seq4. Using the
combined HMM, and the function viterbi path, find for each sequence what are
the two digits, and where is the boundary, according to the HMM estimate. Along
with your answers turn in the plots, or numerical results, on which you base your
estimates.

Answer: We can plot the most likely sequence of states by running

plot(viterbi_path(seq1,p0,pt,mus,Sigmas));

The results, for the four MFCC sequences, are shown in Figure 3. Recall
that the states 1 through 5 correspond to the meata-state “four”, while states
6 through 10 correspond to “five”. The transitions between these two sets
of states correspond, therefore, to transitions between the words. Moreover,
since within one word the path can only proceed through the states in ascending
order, any transition from states 5 and 10 correspond to a new word. Based on
this reasoning, one can identify that the words in the sequences are, according
to the HMM estimate:

seq1 “four” at t = 0 . . . 90, followed by “four”,

seq2 “four” at t = 0 . . . 75, followed by “five”,

seq3 “five” at t = 0 . . . 94, followed by “five”,

seq4 “four” at t = 0 . . . 86, followed by “five”.

The word identification is correct, and all the boundaries are within the silence
period between the two words, so the results could be said to be “correct”. One
can note, however, some clear effects of the imperfections of our naive model.
For instance, the final observations are attributed to the beginning of a non-
existing third word (we do not constrain our model to end in states 5 or 10).
Also, the model for “five” tends to attribute very short observation portions
to the third state (the correspondence of states to phonemes is probably not
very true in this case). Such problems could be solved, at least partially, by
improving the model, and by introduction of supervision (e.g., human-marked
phonemes). Nevertheless, our naive HMM does a reasonable job segmenting
the sequence, and identifying the words.
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Figure 3: The four test cases for word identification
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C P (C)
g .3
a .5
b .2

(a)

P (T1|C) P (T2|C)
C 1 0 1 0
g .7 .3 .8 .2
a .5 .5 .4 .6
b .2 .8 .1 .9

(b)

T1 T2 P (D|T1, T2)
0 1

0 0 1 0
0 1 1 0
1 0 0 1
1 1 0 1

(c)

Table 1: Settings for Problem 3. (a) P (C). (b) P (T1|C) and P (T2|C). (c) P (D|T1, T2).

Problem 3: Graphical models

Let us start by warming up with a simple belief network. Consider the following scenario.
A person (hereafter called the “buyer”) wants to buy a used car; the condition of the car
is a random variable C, with the value in {g, a, b} corresponding, respectively, to good,
average and bad quality. Our belief about the frequency of each kind in the market is
expressed by the distribution of C, shown in Table 1(a). The buyer bases his decision
whether to buy a car on the outcome of two tests which he runs on the car, T1 and T2. The
outcomes, t1 and t2 respectively, are binary - i.e. the car either passes a test (1) or fails
(0). Unfortunately, the results of the tests are non-deterministic, even given the condition
of the car. We do know the distribution of this results, conditioned on the car quality - see
Table 1(b). Based on the test outcomes, the buyer decides whether to buy a car; for the
sake of convenience, let us for now treat this decision as a random variable, even though
its distribution (conditioned on the test outcomes) shown in Table 1(c) shows that it is in
fact a deterministic decision. We encode the decision to buy as 1 and not to buy as 0.

1. [2pt] Draw the graphical model corresponding to the described settings. Your model
should contain 4 nodes (C, T1, T2, D) – mark them clearly.

Answer: The model is drawn in Figure 4(a).

2. [2pt] Write down the joint probability of observing the quadruple (C = c, T1 =
t1, T2 = t2, D = d) as a product of known distributions.

Answer:
P (c, t1, t2, d) = P (c)p(t1|c)p(t2|c)p(d|t1, t2)

3. [2pt] What are the marginal distributions of test outcomes, P (T1) and P (T2)? What
is their joint distribution? Are these two random variables marginally independent?
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Answer: The marginal distribution of T1 can be found from the joint:

P (t1) =
∑

c,t2,d

P (c, t1, t2, d).

The summation over the three variables includes, in principle, 3×2×2=12 terms
(for each possible value of t1). However, this can be simplified due to the
structure of the model:

P (t1) =
∑

c,t2,d

p(c)p(t1|c)p(t2|c)p(d|t1, t2)

=
∑

c

P (c)P (t1|c)
∑
t2

P (t2|c)
∑

d

P (d|t1, t2)

Since
∑

x P (x|y) = 1, we can take the sum over only 3 terms for each value
of t1, and get the (obvious)

P (t1) =
∑

c

P (c)P (t1|c) =

{
1/2 for t1 = 0,

1/2 for t1 = 1.

Similarly, one gets

P (t2) =

{
.54 for t2 = 0,

.46 for t2 = 1.

The joint of the test outcomes can be computed in a similar manner:

P (t1, t2) =
∑

c

P (t1|c)P (t2|c)P (c) =





.312 (0, 0)

.188 (0, 1)

.228 (1, 0)

.272 (1, 1)
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which is different from P (t1)P (t2) (e.g. P (t1 = 0)P (t2 = 0) = .5×.54 = .27).
Therefore, T1 and T2 are not marginally independent. This is also what we
would expect based on the graph in Figure 4(a) since both variables depend
on C. However, the parameters could be chosen in such a way that T1 and
T2 would become marginally independent despite the graph (the probability
distribution associated with the graph may satisfy additional independencies
beyond those expressed by the graph).

4. [2pt] You are told that the car in question is actually in average condition. What
is the joint distribution of T1, T2 given that knowledge? Are T1 and T2 independent
given C?

Answer: This situation is graphically depicted in Figure 4(b). The joint
distribution of T1, T2 is now given (after eliminating the sum over d) by

P (t1, t2|c) = P (t1|c = a)P (t2|c = a),

and the the variables are independent given C (another way of checking that
is by building the moralized ancestral graph for T1, T2, C).

5. [2pt] Suppose that in addition to knowing that the car is in average condition, you
also know that the buyer purchased the car. What is the joint distribution of T1, T2

given that knowledge? Are T1 and T2 independent given C and D?

Answer: The situation is depicted in Figure 4(c). Now we can not simply
eliminate d:

P (t1, t2|c, d) =
P (t1, t2, c, d)

P (c, d)

We can calculate the denominator as

P (c = a, d = 1) =
∑
t1,t2

P (t1, t2, c = a, d = 1)

= P (c = a)
∑
t1,t2

p(t1|a)p(t2|a)p(d = 1|t1, t2) = .25

and therefore

P (t1, t2|c, d) =





.6 (1, 0)

.4 (1, 1)

0 (0, 0), (0, 1)

Finding the marginals in much the same manner as before, we get

P (t1|c, d) =

{
0 t1 = 0,

1 t1 = 1
and P (t1|c, d) =

{
.6 t2 = 0,

.4 t2 = 1
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C T D

U

P(C) P(T|C) S(T)

U(C,D)

Figure 4: Simple influence diagram. Semantics of the nodes: C – condition of the car, T
– the outcome of the test, D - the decision whether to buy or not, U - the utility to be
maximized by the decision.

Therefore, perhaps surprisingly, T1 and T2 are actually independent given C
and D. This example shows why one cannot conclude dependence from the
presence of an arrow in a graphical model - only independence from the ab-
sence of arrow. In our case, the conditional distribution P (D|T1, T2) is in fact
P (D|T1) - i.e. the arrow from T2 to D carries no real effect.

Treating D as a random variable is somewhat of an abuse - it is, in fact, a special entity – a
decision node. Such nodes are usually shown in a graphical model as squares, to distinguish
them from the random variable nodes (circles). A decision node represent choices available
to a decision-maker. The arcs entering a decision node have different meaning from the
arcs entering a random variable node; rather than denoting probabilistic dependence, they
show what informational input is available to the decision maker at that node.

In addition, we can define yet another special kind of nodes in a graphical model – value
nodes. A value node, which is shown as a diamond, represents a utility (function) to be
maximized by the decision maker. Arcs entering a value node show functional dependence
(as in Bayesian network,the exact form of the dependence must be stored in the node).
The belief network, augmented by decision and value nodes, is called an influence diagram.

Before we proceed, let us look at an example. Suppose we have a simplified version of
our car purchase scenario, in which there is a single test, T , which the car passes with
probability 0.8, 0.4 or 0.1 if its condition is respectively g, a or b. The distribution of C is
the same as in Table 1. Based on the test outcome, the buyer decides whether to buy the
car or not. The influence diagram for this scenario is shown in Figure 4.

In order to determine the utility function U(c, d), we will also need the information on
losses and gains associated with each decision. Let the price of the car be $1000, and
assume that the market value for a good car of this model is V (g)=$1,500, for a bad car
it is V (b)=$300, and for an average car V (a)=$1100. The buyer must also pay the fee for
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the test - say, $50. The utility function then is

U(c, d) =

{
u0 = −$50, if d = 0

u1(c) = V (c)− $1050, if d = 1.
(1)

The task typically associated with an influence diagram is to select the strategy at the
decision nodes that would maximize the value of the utility. A strategy S(X) is a function
associated with a decision node, which given the input X to that node, computes the
decision value. There are four possible strategies in our case:

S1(t) : t = 0 → d = 0, t = 1 → d = 0, (2)

S2(t) : t = 0 → d = 0, t = 1 → d = 1, (3)

S3(t) : t = 0 → d = 1, t = 1 → d = 0, (4)

S4(t) : t = 0 → d = 1, t = 1 → d = 1. (5)

We can compute the expected utility for a strategy S, given the distribution of the random
variables in the diagram:

ES = EC,T [U(c, S(t))] = EC

[
ET |C [u(c, S(t))]

]
=

∑

c=g,a,b

P (c)
∑
t=0,1

P (t|c)u(c, S(t)), (6)

which becomes, for our four strategies,

ES1 = −50,

ES2 = .3(.8× 450− .2× 50) + .5(.4× 50− .6× 50) + .2(−.1× 750− .9× 50) = 76,

ES3 = .3(.2× 450− .8× 50) + .5(.6× 50− .4× 50) + .2(−.9× 750− .1× 50) = −116,

ES4 = .3× 450 + .5× 50− .2× 750 = 10.

Thus, perhaps not surprisingly, the strategy that maximizes the expected utility value is S2

- buy the car only if it passes the test. Of course, a different cost, or a different probability
distribution of a random variable could change that.

Let us now proceed and develop a somewhat more interesting framework for the car buying
problem. The meaning of C and its distribution are same as before. Test 1, with probability
distribution of the outcome T1 as described in Table 1, consists of simply looking at the
car, and costs nothing. Its outcome can be interpreted as whether the buyer liked the car
(1) or did not (0). We can make a decision whether to buy the car (perhaps based on the
outcome of T1), or ask a mechanic to check the car first – test 2, with outcome T2, for
which there is a fee of $50 – and then decide. The car price and the market value are the
same as described above. Note that different decision strategies involve decisions based on
both tests, one of the tests, or no tests at all. The utility of the decision is again measured
by the financial gain of the buyer.
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Figure 5: Influence diagram for 2.6

6. [10pt] Draw an influence diagram corresponding to this setting. Include the value
node U . For each node clearly show its kind (by drawing it as a circle/square/diamond),
name it, and describe its semantics (meaning) in no more than one sentence.

Answer: The diagram is shown in Figure 5. The condition of car influences
the test outcomes, but does not directly affect the decisions (i.e. we do not
about C anything other than conveyed by T1 and T2). The result of the first
decision affects the second decision: technically, D2 has 2 inputs if D1 = 1 and
only one (T1) if D1 = 0. Note that the test outcome T2 does not depend on
D1. Conceptually, the semantics of our model are as follows: we assume that
the test outcome T2 “exists” whether we look at it or not (and is drawn from
the corresponding conditional distribution). The value of D1 tells us whether
to look at this outcome (and pay for it), or not.

Finally, the utility value U is a function of the decisions made by the buyer,
and of the true conditions of the car. That includes D1, which determines
whether the mechanic’s fee is to be subtracted from the gain. Utility does not
depend on the test outcomes (other than through the decisions).

7. [3pt] How many possible strategies are implementable in this influence diagram?
Explain what they are (do not enumerate all the strategies!). Note that the strategy
is described by the functions associated with all the decision nodes in the diagram.

Answer: Let us denote the “local” strategy in D1 by S1(t1), and the lo-
cal strategy in D2 by S2(t1, t2, d1). The “global” strategy can be written as
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S2(t1, t2, S1(t1)). Let us first focus on S1. Similar to the example above, there
are 4 strategies for that decision node, which correspond to the 4 Boolean
functions of the single binary input t1.

The decision in D2 implements a Boolean function of two variables (test
outcomes), but it is also constrained by D1. Not all combinations of feasible
local strategies in the two decision nodes create a feasible global strategy,
however. Let us look at the possibilities.

D1: never do T2 The decision in D2 is a function of t1 only; there are 4 such functions, and
thus 4 global strategies that include this local strategy in D1.

D1: always do T2 Any Boolean function of t1, t2 is feasible - therefore, there are 16 global
strategies corresponding to this case.

D1: do T2 iff T1 fails First, we have to provide a decision for the case no T2 is done; this only
can happen if t1 = 1 because otherwise T2 would be required. That
means a constant Boolean function f1 (no arguments) - i.e. 2 possibilities.
Otherwise, we do T2 and need to decide based on the outcome of T2

(again, we know that in this case necessarily t1 = 0). There are 4 possible
Boolean functions f2(t2) that provide the decision. Any combination of
f1, f2 provides a feasible strategy, therefore, we have 8 global strategies
for this D1.

D1: do T2 iff T1 passes Very similar to the previous case, but for the opposite values of t1. Again,
8 strategies.

To summarize we have a total of 36 strategies. Note that we are not concerned
here with the question whether some of the may be equivalent, in terms of the
resulting utility, under the given distributions; we are counting strategies that
could produce different expected utilities for some distributions associated with
the model.

8. [2pt] Write down the expected value of the utility as a function of the strategy.

Answer: Let us denote the market value of the car in condition c by V (c).
We also will for simplicity write the decision function in D2 as a function of
two variables d2(t1, t2) including the cases where the functional dependence on
one or both arguments is trivial. The utility value is determined as

U(c, d1, d2, t1, t2) = U(c, d1(t1), d2(t1, t2, d1(t1))) = d2(V (c)− 1000)− 50d1

Taking the expectation w.r.t. the random variables, we have

EP (c,t1,t2) [U ] = EP (c,t1,t2) [d2(t1, t2)(V (c)− 1000)]− 50EP (t1) [d1(t1)].

9. [5pt] Find the strategy with the maximal expected utility, and the maximum value
attained by that strategy. Advice: You may find it appropriate to run a short script in Matlab

or another programming language that will compute the expected utility for different strategies;

no need to turn it in.
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Answer: A simple script, which iterates over the 36 strategies and computes
(by simple summation over c, t1, t2) the expected utility for each, finds that
the maximal expected utility, $111.8, is reached by the following strategy: if
T1 = 1, buy the car. Otherwise, do T2 and buy the car if it passes the test.
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