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How to obtain Bayesian Networks ?

e construct them manually: experts / knowledge needed
e |learn them from data

e combine prior knowledge and data



Properties of Bayesian Networks

e qualitative:
— graph structure visualizes relevant (in)dependencies among
random variables in a domain
— interpretation in causal manner: requires add’l assumptions

e quantitative: make predictions (inference)

e Example (Visit to Asia):

Wisit to Asia?
Has tuberculosis

Tuherculosis ar ca
Fositive #-ray?

Has branchitis




Bayesian Networks (more formal)

e network structure: directed acyclic graph (DAG)

(B

— directed edge: asymmetric relations (but not necessarily causal)
— missing edges represent conditional independences (d-separation
criterion)

e parameters: conditional probabilities
p(A,B,C,D) = p(D|C, K, A) -p(C|B, X) - p(B|A) - p(A)

e BN describes probability distribution over n variables in a modular
way:

p(X) = T p(XilM)
1=1



How to model conditional probability distributions ?

e discrete variables (tables)

e continuous variables:
— multivariate Gaussian (linear regression)

(B
p(A): A~ N(uy,0%)
p(B|A): B~ N(up+0ap-A, 03)

— nonlinear relations:
x nonlinear regression

p(B|A): B~ N(up+04p1-A+04p52-A% 0%)
* other models: neural networks 4+ noise, ...

e both discrete and continuous variables



Markov-Equivalence

e applies to discrete BNs and continuous Gaussian BNs

e Example:
\
My My m, M
N N
A and B dependent (marginally) A and B independent

A and B conditionally independent given C A and B dependent given

p(4, B,C) = p(A|C) p(C|B) p(B) = p(A[C) p(BI|C) p(C) = p(C]A) p(B|C) p(A)

e DAGS can be partitioned into equivalence classes that represent
the same conditional independences




Markov-Equivalence (cont’d)

e Two DAGs are Markov-equivalent iff they have
— the same edges when ignoring their orientations
— and the same v-structures (\ )

Example: 2 Markov-equivalent DAGs
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in the following assumed:

— no hidden variables

— NO missing data

— discrete BNs (blue=discrete)



Scoring Functions

e Maximum Likelihood
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not useful for model selection: over-fitting



Scoring Functions (cont’d)

e BIC (Bayesian Information Criterion, aka (Jeffreys-)Schwarz Cri-
terion)

N 1
feic(m) =1(0m) — 5 |0m| log N

— trade-off between goodness of fit and model complexity
— BIC coincides with MDL (Minimum Description Length)
e AIC (Akaike Information Criterion)

faic(m) = 1(0m) — |0m|

where the number of independent parameters is

Om| = Z (X —1)- [Ny
' =1lxen, IXI



Score Difference

m+ m-
e compare two graphs m™T and m~— that differ in one edge only
e Example: BIC for discrete variables

Af(mT,m™) = f(mT)— f(m")

N, N 1
— Z Na,b,r 109 abm T Sdprlog N
CL,b,T(' Na”ﬂ-Nbaﬂ- 2
= g(A,B[N)

. independent of remaining variables

where dpg are the degrees of freedom:

doF = |0+ = 10,,-| = (JA| = 1) - (|B] =1) - [N]

=[lxen !Xl



Score Difference (cont’d)

e Conditional Independences (which are represented by BNSs):

g(A,B|M) <0 ... absence of egde A « B favored given I
... A independent of B given Il
g(A,B|M) >0 ... presence of egde A « B favored given I

.. A dependent on B given Il

e Markov equivalence:
— data cannot help distinguish among Markov equivalent DAGS
— a "local” property of equivalent DAGs: an edge A «— B can
be reversed if My \ {B} =Tg\{A}
— for BIC: g(A, B|N) = g(B, A|lN)
— hence BIC assigns the same score to equivalent DAGs
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Search Strategies

in discrete or continuous Gaussian BNSs:

— data can help distinguish only among equivalence classes

— search in space of equivalence classes is thus most appropriate,
but very involved

search in space of DAGSs
number of DAGs with n variables: 2(2) < #DAGs < 3(2)
finding optimal DAG w.r.t. a scoring function f is NP-hard

resort to approximate search strategies



Local Search

general-purpose search strategy

choose a starting graph

proceed through search space along a sequence of neighboring
DAGSs, guided by scoring function

DAGs differing in a single edge may be defined as neighbors

hence, 3 possible transitions in local search:

— add an edge (if permissible)

— delete an edge

— reverse the orientation of an edge (if permissible)

score difference due to transition: A = f(mnew) — f(mgq)



Local Search and Greedy Hill Climbing

e Cchoose transition that maximizes A
e repeat until A < O for all permissible steps

e result: graph that is a local optimum

e Example:

delete reverse add



Local Search and Simulated Annealing

general purpose optimization procedure to avoid local optima
inspired by cooling down an ensemble of particles (statistical
physics)

temperature of system: T

procedure

— start with high temperature and lower it slowly over time

— randomly choose a transition
— make transition with probability p(A) = min{1l,exp(A/T)}

theory: finds global minimum of —f with probability 1 if starting
temperature is sufficiently high and is lowered sufficiently slowly

practice: limited computation time, may only find a local opti-
mum
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Analysis of Questionnaires

e find relevant conditional dependencies

e e.9., Wisconsin High-School Students (Sewell and Shah, 1968):
— survey among 10,318 students
— |learn BN from that data:

SEX

SES. socioeconomic status  SEX: gender of student
PE. parental encouragement CP: college plans
1Q: intelligence quotient

SES



Analysis of Noisy Measurements

e €.d., gene expression data from bio-tech labs
— graph: recovery of regulatory networks
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(Hartemink et al., 2002)

— prediction: what is the most informative next experiment to
be conducted (active learning)?



