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How to obtain Bayesian Networks ?

• construct them manually: experts / knowledge needed

• learn them from data

• combine prior knowledge and data



Properties of Bayesian Networks

• qualitative:

– graph structure visualizes relevant (in)dependencies among

random variables in a domain

– interpretation in causal manner: requires add’l assumptions

• quantitative: make predictions (inference)

• Example (Visit to Asia):



Bayesian Networks (more formal)

• network structure: directed acyclic graph (DAG)
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– directed edge: asymmetric relations (but not necessarily causal)

– missing edges represent conditional independences (d-separation

criterion)

• parameters: conditional probabilities

p(A,B,C,D) = p(D|C,BX, A) · p(C|B,AX) · p(B|A) · p(A)

• BN describes probability distribution over n variables in a modular

way:

p(X) =
n∏
i=1

p(Xi|Πi)



How to model conditional probability distributions ?

• discrete variables (tables)

• continuous variables:

– multivariate Gaussian (linear regression)

BA

p(A): A ∼ N(µA, σ
2
A)

p(B|A): B ∼ N(µB + θA,B ·A, σ2
B)

– nonlinear relations:

∗ nonlinear regression

p(B|A): B ∼ N(µB+θA,B,1·A+θA,B,2·A2, σ2
B)

∗ other models: neural networks + noise, ...

• both discrete and continuous variables



Markov-Equivalence

• applies to discrete BNs and continuous Gaussian BNs

• Example:

m1m0 m2 m3

A B

CC

A BBA

CC

A B

A and B conditionally independent given C

A and B independent 

A and B dependent given C

A and B dependent (marginally)

v−structure

p(A,B,C) = p(A|C) p(C|B) p(B)︸ ︷︷ ︸
m0

= p(A|C) p(B|C) p(C)︸ ︷︷ ︸
m1

= p(C|A) p(B|C) p(A)︸ ︷︷ ︸
m2

• DAGs can be partitioned into equivalence classes that represent

the same conditional independences



Markov-Equivalence (cont’d)

• Two DAGs are Markov-equivalent iff they have

– the same edges when ignoring their orientations

– and the same v-structures (↘↙)

Example: 2 Markov-equivalent DAGs
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• in the following assumed:

– no hidden variables

– no missing data

– discrete BNs (blue=discrete)



Scoring Functions

• Maximum Likelihood

θ̂xi|πi =
Nxi,πi
Nπi

l(θ̂m) = logL(θm) =
∑
i

∑
xi,πi

Nxi,πi log
Nxi,πi
Nπi

not useful for model selection: over-fitting



Scoring Functions (cont’d)

• BIC (Bayesian Information Criterion, aka (Jeffreys-)Schwarz Cri-
terion)

fBIC(m) = l(θ̂m)−
1

2
|θ̂m| logN

– trade-off between goodness of fit and model complexity
– BIC coincides with MDL (Minimum Description Length)

• AIC (Akaike Information Criterion)

fAIC(m) = l(θ̂m)− |θ̂m|

where the number of independent parameters is

|θ̂m| =
∑
i

(|Xi| − 1) · |Πi|︸︷︷︸
=
∏
X∈Πi

|X|



Score Difference
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• compare two graphs m+ and m− that differ in one edge only

• Example: BIC for discrete variables

∆f(m+,m−) = f(m+)− f(m−)

=
∑
a,b,π

Na,b,π log
Na,b,πNπ

Na,πNb,π
−

1

2
dDF logN

= g(A,B|Π)

... independent of remaining variables

where dDF are the degrees of freedom:

dDF = |θm+| − |θm−| = (|A| − 1) · (|B| − 1) · |Π|︸︷︷︸
=
∏
X∈Π |X|



Score Difference (cont’d)

• Conditional Independences (which are represented by BNs):

g(A,B|Π) < 0 ... absence of egdeA← B favored given Π

... A independent of B given Π

g(A,B|Π) > 0 ... presence of egdeA← B favored given Π

... A dependent on B given Π

• Markov equivalence:

– data cannot help distinguish among Markov equivalent DAGs

– a ”local” property of equivalent DAGs: an edge A ← B can

be reversed if ΠA \ {B} = ΠB \ {A}
– for BIC: g(A,B|Π) = g(B,A|Π)

– hence BIC assigns the same score to equivalent DAGs
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Search Strategies

• in discrete or continuous Gaussian BNs:

– data can help distinguish only among equivalence classes

– search in space of equivalence classes is thus most appropriate,

but very involved

• search in space of DAGs

• number of DAGs with n variables: 2(n2) < #DAGs ≤ 3(n2)

• finding optimal DAG w.r.t. a scoring function f is NP-hard

• resort to approximate search strategies



Local Search

• general-purpose search strategy

• choose a starting graph

• proceed through search space along a sequence of neighboring

DAGs, guided by scoring function

• DAGs differing in a single edge may be defined as neighbors

• hence, 3 possible transitions in local search:

– add an edge (if permissible)

– delete an edge

– reverse the orientation of an edge (if permissible)

• score difference due to transition: ∆ = f(mnew)− f(mold)



Local Search and Greedy Hill Climbing

• choose transition that maximizes ∆

• repeat until ∆ < 0 for all permissible steps

• result: graph that is a local optimum

• Example:

PE

CP
IQ

SEX

SES
PE

CP
IQ

SEX

SES
PE

CP
IQ

SEX

SES
PE

CP
IQ

SES

SEX
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Local Search and Simulated Annealing

• general purpose optimization procedure to avoid local optima

• inspired by cooling down an ensemble of particles (statistical
physics)

• temperature of system: T

• procedure
– start with high temperature and lower it slowly over time
– randomly choose a transition
– make transition with probability p(∆) = min{1, exp(∆/T )}

• theory: finds global minimum of −f with probability 1 if starting
temperature is sufficiently high and is lowered sufficiently slowly

• practice: limited computation time, may only find a local opti-
mum



Outline

• Bayesian networks

• Learning discrete Bayesian Networks

– Scoring Functions

– Search Strategies

• Applications



Analysis of Questionnaires

• find relevant conditional dependencies

• e.g., Wisconsin High-School Students (Sewell and Shah, 1968):

– survey among 10,318 students

– learn BN from that data:

PE

CP
IQ

SEX

SES

SEX: gender of student
CP: college plansPE: parental encouragement

SES: socioeconomic status

IQ: intelligence quotient



Analysis of Noisy Measurements

• e.g., gene expression data from bio-tech labs

– graph: recovery of regulatory networks

(Hartemink et al., 2002)

– prediction: what is the most informative next experiment to

be conducted (active learning)?


