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6.867 Machine learning: administrivia

• Instructor: Prof. Tommi Jaakkola (tommi@ai.mit.edu)

• TA: Gregory Shakhnarovich (gregory@ai.mit.edu)

• General info

– lectures TR 2.30-4pm in 37-212

– tutorials/recitations (time/location tba)

– website http://www.ai.mit.edu/courses/6.867 (please

register)

• Grading

– midterm (15%), final (25%)

– 6 (≈ bi-weekly) problem sets (30%)

– final project (30%)
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Broader context

• What is learning anyway?

• Principles of learning are “universal”

– society (e.g., scientific community)

– animal (e.g., human)

– machine

• Prediction is the key...
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Prediction

• We make predictions all the time but rarely investigate the

processes underlying our predictions

• In carrying out scientific research we are also governed by

how theories are evaluated

• To automate the process of making predictions we need to

understand in addition how we search and refine “theories”
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Machine learning

• Statistical machine learning

– principles, methods, and algorithms for learning and

prediction on the basis of past experience

– already everywhere: speech recognition, hand-written

character recognition, information retrieval, operating

systems, compilers, fraud detection, security, defense

applications, ...
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Example

• A classifcation problem: predict the grades for students

taking this course
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Example

• A classifcation problem: predict the grades for students

taking this course

• Key steps:

1. data

2. assumptions

3. representation

4. estimation

5. evaluation

6. model selection
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Example

• A classifcation problem: predict the grades for students

taking this course

• Key steps:

1. data: what “past experience” can we rely on?

2. assumptions: what can we assume about the students or

the course?

3. representation: how do we “summarize” a student?

4. estimation: how do we construct a map from students to

grades?

5. evaluation: how well are we predicting?

6. model selection: perhaps we can do even better?
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Data

• The data we have available (in principle):

– names and grades of students in past years ML courses

– academic record of past and current students
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Data

• The data we have available (in principle):

– names and grades of students in past years ML courses

– academic record of past and current students

• “training” data:

Student ML course 1 course 2 ...

Peter A B A ...

David B A A ...

• “test” data:

Student ML course 1 course 2 ...

Jack ? C A ...

Kate ? A A ...

• Anything else we could use?
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Assumptions

• There are many assumptions we can make to facilitate

predictions

1. the course has remained roughly the same over the years

2. each student performs independently from others
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Representation

• Academic records are rather diverse so we might limit the

summaries to a select few courses

• For example, we can summarize the ith student (say Pete)

with a vector

xi = [A C B]

where the grades correspond to (say) 18.06, 6.041, and

6.034.

• The available data in this representation

Training Test

Student ML grade Student ML grade

x1 A x′1 ?

x2 B x′2 ?

. . . . . . . . . . . .
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Estimation

• Given the training data

Student ML grade

x1 A

x2 B

. . . . . .

we need to find a mapping from “input vectors” x to “labels”

y encoding the grades for the ML course.
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Estimation

• Given the training data

Student ML grade

x1 A

x2 B

. . . . . .

we need to find a mapping from “input vectors” x to “labels”

y encoding the grades for the ML course.

• Possible solution (nearest neighbor classifier):

1. For any student x find the “closest” student xi in the

training set

2. Predict yi, the grade of the closest student
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Evaluation

• How can we tell how good our predictions are?

– we can wait till the end of this course...

– we can try to assess the accuracy based on the data we

already have (training data)
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Evaluation

• How can we tell how good our predictions are?

– we can wait till the end of this course...

– we can try to assess the accuracy based on the data we

already have (training data)

• Possible solution:

– divide the training set further into training and test sets

– evaluate the classifier constructed on the basis of only the

smaller training set on the new test set
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Model selection

• We can refine

– the estimation algorithm (e.g., using a classifier other than

the nearest neighbor classifier)

– the representation (e.g., base the summaries on a different

set of courses)

– the assumptions (e.g., perhaps students work in groups)

etc.

• We have to rely on the method of evaluating the accuracy

of our predictions to select among the possible refinements
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Types of learning problems

A rough (and somewhat outdated) classification of learning

problems:

• Supervised learning, where we get a set of training inputs

and outputs

– classification, regression

• Unsupervised learning, where we are interested in capturing

inherent organization in the data

– clustering, density estimation

• Reinforcement learning, where we only get feedback in the

form of how well we are doing (not what we should be doing)

– planning
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Supervised learning: classification (again)

Example: digit recognition (8x8 binary digits)

binary digit target label

“2”

“2”

“1”

“1”

. . . . . .

• We wish to learn the mapping from digits to labels
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Representation/assumptions

• A change in the representation that preserves the relevant

information can preclude learning
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Supervised learning: regression
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• Given a set of training examples {(x1, y1) . . . , (xn, yn)}, we

want to learn a mapping f : X → Y such that

yi ≈ f(xi), i = 1, . . . , n
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Unsupervised learning: data organization

The digits again...

• We’d like to understand the generation process of examples

(digits in this case)
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