Machine learning: lecture 1

Tommi S. Jaakkola MIT AI Lab *tommi@ai.mit.edu*

6.867 Machine learning: administrivia

- Instructor: Prof. Tommi Jaakkola (tommi@ai.mit.edu)
- TA: Gregory Shakhnarovich (gregory@ai.mit.edu)
- General info
 - lectures TR 2.30-4pm in 37-212
 - tutorials/recitations (time/location tba)
 - website http://www.ai.mit.edu/courses/6.867 (please
 register)
- Grading
 - midterm (15%), final (25%)
 - 6 (\approx bi-weekly) problem sets (30%)
 - final project (30%)

Broader context

- What is learning anyway?
- Principles of learning are "universal"
 - society (e.g., scientific community)
 - animal (e.g., human)
 - machine
- Prediction is the key...

Prediction

- We make predictions all the time but rarely investigate the processes underlying our predictions
- In carrying out scientific research we are also governed by how theories are evaluated
- To automate the process of making predictions we need to understand *in addition* how we search and refine "theories"

Machine learning

- Statistical machine learning
 - principles, methods, and algorithms for learning and prediction on the basis of past experience
 - already everywhere: speech recognition, hand-written character recognition, information retrieval, operating systems, compilers, fraud detection, security, defense applications, ...

• A classification problem: predict the grades for students taking this course

- A classification problem: predict the grades for students taking this course
- Key steps:
 - 1. data
 - 2. assumptions
 - 3. representation
 - 4. estimation
 - 5. evaluation
 - 6. model selection

- A classification problem: predict the grades for students taking this course
- Key steps:
 - 1. data: what "past experience" can we rely on?

- A classification problem: predict the grades for students taking this course
- Key steps:
 - 1. data: what "past experience" can we rely on?
 - 2. assumptions: what can we assume about the students or the course?

- A classification problem: predict the grades for students taking this course
- Key steps:
 - 1. data: what "past experience" can we rely on?
 - 2. assumptions: what can we assume about the students or the course?
 - 3. representation: how do we "summarize" a student?

- A classification problem: predict the grades for students taking this course
- Key steps:
 - 1. data: what "past experience" can we rely on?
 - 2. assumptions: what can we assume about the students or the course?
 - 3. representation: how do we "summarize" a student?
 - 4. estimation: how do we construct a map from students to grades?

- A classification problem: predict the grades for students taking this course
- Key steps:
 - 1. data: what "past experience" can we rely on?
 - 2. assumptions: what can we assume about the students or the course?
 - 3. representation: how do we "summarize" a student?
 - 4. estimation: how do we construct a map from students to grades?
 - 5. evaluation: how well are we predicting?

- A classification problem: predict the grades for students taking this course
- Key steps:
 - 1. data: what "past experience" can we rely on?
 - 2. assumptions: what can we assume about the students or the course?
 - 3. representation: how do we "summarize" a student?
 - 4. estimation: how do we construct a map from students to grades?
 - 5. evaluation: how well are we predicting?
 - 6. model selection: perhaps we can do even better?

Data

- The data we have available (in principle):
 - names and grades of students in past years ML courses
 - academic record of past and current students

Data

- The data we have available (in principle):
 - names and grades of students in past years ML courses
 - academic record of past and current students
- "training" data:

Student	ML	course 1	course 2	
Peter	А	В	А	•••
David	В	А	А	

• "test" data:

Student	ML	course 1	course 2	
Jack	?	С	А	
Kate	?	А	А	

• Anything else we could use?

Assumptions

- There are many assumptions we can make to facilitate predictions
 - 1. the course has remained roughly the same over the years
 - 2. each student performs independently from others

Representation

- Academic records are rather diverse so we might limit the summaries to a select few courses
- For example, we can summarize the *ith* student (say Pete) with a vector

$$\mathbf{x}_i = [A \ C \ B]$$

where the grades correspond to (say) 18.06, 6.041, and 6.034.

• The available data in this representation

Training		Test		
Student	ML grade	Student	ML grade	
\mathbf{x}_1	А	\mathbf{x}_1'	?	
\mathbf{x}_2	В	\mathbf{x}_2'	?	

Estimation

• Given the training data

. . .

Student	ML grade
\mathbf{x}_1	А
\mathbf{x}_2	В

. . .

we need to find a mapping from "input vectors" \mathbf{x} to "labels" y encoding the grades for the ML course.

Estimation

• Given the training data

Student	ML grade
\mathbf{x}_1	А
\mathbf{x}_2	В

we need to find a mapping from "input vectors" \mathbf{x} to "labels" y encoding the grades for the ML course.

- Possible solution (nearest neighbor classifier):
 - 1. For any student \mathbf{x} find the "closest" student \mathbf{x}_i in the training set
 - 2. Predict y_i , the grade of the closest student

Evaluation

- How can we tell how good our predictions are?
 - we can wait till the end of this course...
 - we can try to assess the accuracy based on the data we already have (training data)

Evaluation

- How can we tell how good our predictions are?
 - we can wait till the end of this course...
 - we can try to assess the accuracy based on the data we already have (training data)
- Possible solution:
 - divide the training set further into training and test sets
 - evaluate the classifier constructed on the basis of only the smaller training set on the new test set

Model selection

- We can refine
 - the estimation algorithm (e.g., using a classifier other than the nearest neighbor classifier)
 - the representation (e.g., base the summaries on a different set of courses)
 - the assumptions (e.g., perhaps students work in groups) etc.
- We have to rely on the method of evaluating the accuracy of our predictions to select among the possible refinements

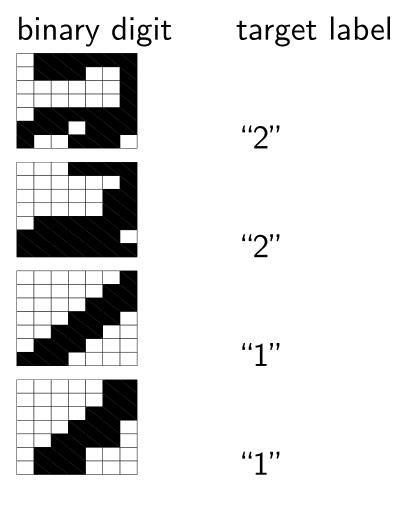
Types of learning problems

A rough (and somewhat outdated) classification of learning problems:

- Supervised learning, where we get a set of training inputs and outputs
 - classification, regression
- Unsupervised learning, where we are interested in capturing inherent organization in the data
 - clustering, density estimation
- Reinforcement learning, where we only get feedback in the form of how well we are doing (not what we should be doing)
 planning

Supervised learning: classification (again)

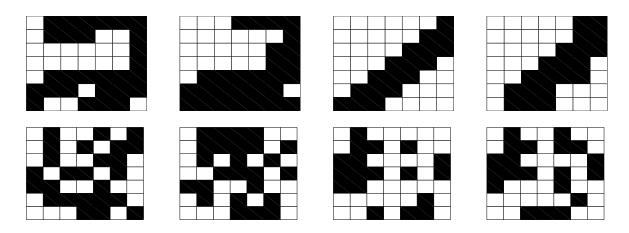
Example: digit recognition (8x8 binary digits)



• We wish to learn the mapping from digits to labels

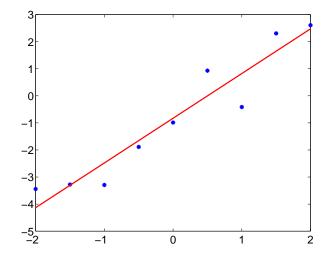
. .

Representation/assumptions



• A change in the representation that preserves the relevant information can preclude learning

Supervised learning: regression

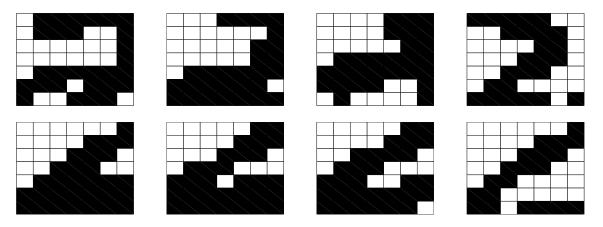


• Given a set of training examples $\{(\mathbf{x}_1, y_1) \dots, (\mathbf{x}_n, y_n)\}$, we want to learn a mapping $f : \mathcal{X} \to \mathcal{Y}$ such that

$$y_i \approx f(\mathbf{x}_i), \ i = 1, \dots, n$$

Unsupervised learning: data organization

The digits again...



• We'd like to understand the generation process of examples (digits in this case)