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Topics

• Combination of classifiers: boosting

– modularity, reweighting

– AdaBoost, examples, generalization

• Complexity and model selection

– shattering, Vapnik-Chervonenkis dimension
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Combination of classifiers

• We wish to generate a set of simple “weak” classification

methods and combine them into a single “strong” method

• The simple classifiers in our case

are decision stumps:

h(x; θ) = sign( w1 xk − w0 )

where θ = {k, w1, w0}.

Each decision stump pays attention

to only a single component of the

input vector
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Combination of classifiers con’d

• We’d like to combine the simple classifiers additively so that

the final classifier is the sign of

ĥm(x) = α̂1 h(x; θ̂1) + . . . + α̂m h(x; θ̂m)

where the “votes” α emphasize component classifiers that

make more reliable predictions than others

• Important issues:

– what is the criterion that we are optimizing? (measure of

loss)

– we would like to estimate each new component classifier

in the same manner (modularity)
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Combination of classifiers con’d

• One possible measure of empirical loss is
n∑

i=1

exp{−yiĥm(xi) }

=
n∑

i=1

exp{−yiĥm−1(xi)− yiα̂mh(xi; θ̂m) }

=
n∑

i=1

exp{−yiĥm−1(xi)}︸ ︷︷ ︸
fixed at stage m

exp{−yiα̂mh(xi; θ̂m) }

=
n∑

i=1

W
(m−1)
i exp{−yiα̂mh(xi; θ̂m) }

The combined classifier based on m − 1 iterations defines a

weighted loss criterion for the next simple classifier to add
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Combination cont’d

• We can simplify a bit the estimation criterion for the new

component classifiers

When αm ≈ 0 (low confidence votes)

exp{−yiαmh(xi; θm) } ≈ 1− yiαmh(xi; θm)

and our empirical loss criterion reduces to

≈
n∑

i=1

W
(m−1)
i (1− yiαmh(xi; θm)) =

=
n∑

i=1

W
(m−1)
i − αm

(
n∑

i=1

W
(m−1)
i yih(xi; θm)

)
We could choose each new component classifier to optimize

a weighted agreement
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Possible algorithm

• At stage m we find θ̂m that maximize (or at least give a

sufficiently high) weighted agreement

n∑
i=1

W
(m−1)
i yih(xi; θm)

where the weights W
(m−1)
i summarize the effect from the

previously combined m− 1 classifiers.

• We find the “votes” α̂m associated with the new classifier

by minimizing the weighted loss

n∑
i=1

W
(m−1)
i exp{−yiαmh(xi; θ̂m) }
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Boosting

• We have basically derived a Boosting algorithm that

sequentially adds new component classifiers by reweighting

training examples

– each component classifier is presented with a slightly

different problem

• AdaBoost preliminaries:

– we work with normalized weights W̃i on the training

examples, initially uniform (W̃i = 1/n)
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The AdaBoost algorithm

1: At the kth iteration we find (any) classifier h(x; θ̂k) for which

the weighted classification error εk

εk = 0.5− 1
2

(
n∑

i=1

W̃
(k−1)
i yih(xi; θ̂k)

)
is better than chance.

2: Determine how many “votes” to assign to the new

component classifier: α̂k = 0.5 log( (1 − εk)/εk )
(decorrelation)

3: Update the weights on the training examples:

W̃
(k)
i = W̃

(k−1)
i · exp{−yiα̂kh(xi; θ̂k) }

and renormalize the new weights to one.
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The AdaBoost algorithm cont’d

• The final classifier after m boosting iterations is given by the

sign of

ĥ(x) =
α̂1h(x; θ̂1) + . . . + α̂mh(x; θ̂m)

α̂1 + . . . + α̂m

(the votes here are normalized for convenience)
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Boosting: example
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Boosting: example cont’d
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Boosting: example cont’d
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Boosting performance

• Training/test errors for the combined classifier

ĥ(x) =
α̂1h(x; θ̂1) + . . . + α̂mh(x; θ̂m)

α̂1 + . . . + α̂m
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What about the error rate of the component classifiers

(decision stumps)?

• Even after the training error of the combined classifier goes to

zero, boosting iterations can still improve the generalization

error!
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Boosting and margin

• Successive boosting iterations improve the majority vote or

margin for the training examples

margin for example i = yi

[
α̂1h(x; θ̂1) + . . . + α̂mh(x; θ̂m)

α̂1 + . . . + α̂m

]
The margin lies in [−1, 1] and is negative for all misclassified

examples.
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Topics

• Complexity and model selection

– shattering, Vapnik-Chervonenkis dimension

– structural risk minimization (next lecture)
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Measures of complexity

• “Complexity” is a measure of a set of classifiers, not any

specific (fixed) classifier

• Many possible measures

– degrees of freedom

– description length

– Vapnik-Chervonenkis dimension

etc.

• There are many reasons for introducing a measure of

complexity

– generalization error guarantees

– selection among competing families of classifiers
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VC-dimension: preliminaries

• A set of classifiers F:
For example, this could be the set of all possible linear

separators, where h ∈ F means that

h(x) = sign
(
w0 + wTx

)
for some values of the parameters w, w0.
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VC-dimension: preliminaries

• Complexity: how many different ways can we label n

training points {x1, . . . ,xn} with classifiers h ∈ F?

In other words, how many distinct binary vectors

[h(x1) h(x2) . . . h(xn)]

do we get by trying each h ∈ F in turn?

[ -1 1 . . . 1 ] h1

[ 1 -1 . . . 1 ] h2

. . .
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VC-dimension: shattering

• A set of classifiers F shatters n points {x1, . . . ,xn} if

[h(x1) h(x2) . . . h(xn)], h ∈ F

generates all 2n distinct labelings.

• Example: linear decision boundaries shatter (any) 3 points

in 2D
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VC-dimension: shattering cont’d

• We cannot shatter 4 points in 2D with linear separators

For example, the following labeling

x

x

x

x

+ -

+-

cannot be produced with any linear separator

• More generally: the set of all d-dimensional linear separators

can shatter exactly d + 1 points
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VC-dimension

• The VC-dimension dV C of a set of classifiers F is the largest

number of points that F can shatter

• This is a combinatorial concept and doesn’t depend on what

type of classifier we use, only how “flexible” the set of

classifiers is

Example: Let F be a set of classifiers defined in terms of

linear combinations of m fixed basis functions

h(x) = sign (w0 + w1φ1(x) + . . . + wmφm(x) )

dV C is at most m + 1 regardless of the form of the fixed

basis functions.
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