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Topics

• Complexity and model selection

– learning and VC dimension

– structural risk minimization

• Complexity, compression, and model selection

– description length

– minimum description length principle
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VC-dimension: review

• The complexity of a set of classifiers depends on how many

different ways we can label n training points {x1, . . . ,xn}
with classifiers h ∈ F

In other words, this is the number of distinct binary vectors

[h(x1) h(x2) . . . h(xn)]

[ -1 1 . . . 1 ] h1

[ 1 -1 . . . 1 ] h2

. . .
we get by trying out each h ∈ F in turn. (the training points

are chosen to maximize this number)

• VC-dimension is the largest number of points we can shatter,

i.e., generate all possible labelings of the points
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Learning and VC-dimension

• We don’t really learn anything until after we have more than

dV C training examples
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• The number of labelings that the set of classifiers can

generate over n points increases sub-exponentially after

n > dV C (in this case dV C = 100)
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Learning and VC-dimension

• When the VC-dimension is finite, the probability (over the

choice of the training set) that we would find any h ∈ F for

which the difference

∣∣∣∣
Empirical loss︷ ︸︸ ︷

1
n

n∑
i=1

Loss(yi, h(xi))−
Expected loss︷ ︸︸ ︷

E{Loss(y, h(x)) }
∣∣∣∣

is large goes down exponentially fast as a function of the size

of the training set n. Here Loss(y, h(x)) = 1 if y 6= h(x)
and zero otherwise (so called zero-one loss)

• This result holds for any underlying probability distribution

from which the examples and the labels are generated

Tommi Jaakkola, MIT AI Lab 5



Extensions: complexity and margin

• The number of possible labelings of points with large margin

can be dramatically less than the (basic) VC-dimension
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• The set of separating hyperplaces which attain margin γ

or better for examples within a sphere of radius R has

VC-dimension bounded by dV C(γ) ≤ R2/γ2
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Model selection

• We try to find the model with the best balance of complexity

and the fit to the training data

• Ideally, we would select a model from a nested sequence of

models of increasing complexity

Model 1 d1

Model 2 d2

Model 3 d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• Basic model selection criterion:

Criterion = (empirical) score + Complexity penalty
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Structural risk minimization

• In structural risk minimization we define the models in terms

of VC-dimension (or refinements)

Model 1 dV C = d1

Model 2 dV C = d2

Model 3 dV C = d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• The selection criterion: lowest upper bound on the expected

loss

Expected loss ≤ Empirical loss + Complexity penalty
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Example

• Models of increasing complexity

Model 1 K(x1,x2) = (1 + (xT
1 x2))

Model 2 K(x1,x2) = (1 + (xT
1 x2))2

Model 3 K(x1,x2) = (1 + (xT
1 x2))3

. . . . . .

• These are nested, i.e.,

F1 ⊆ F2 ⊆ F3 ⊆ . . .

where Fk refers to the set of possible decision boundaries

that the model k can represent.

• Still need to derive the criterion...
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Bounds on expected loss

• For simplicity, let’s look at a single fixed classifier h(x) and

n training points

ε(n,δ) 

Expected loss 

δ 

With probability at least 1− δ over the choice of the training

set

Expected loss︷ ︸︸ ︷
E{Loss(y, h(x)) } ≤

Empirical loss︷ ︸︸ ︷
1
n

n∑
i=1

Loss(yi, h(xi))+
sampling penalty︷ ︸︸ ︷

ε(n, δ)

• For the bound to be valid uniformly for all classifiers in the

set F , we have to include the VC-dim
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Structural risk minimization

• Finite VC-dimension gives us some guarantees about how

close the empirical loss is to the expected loss

With probability at least 1− δ over the choice of the training

set, for all h ∈ Fk

Expected loss︷ ︸︸ ︷
E{Loss(y, h(x)) } ≤

Empirical loss︷ ︸︸ ︷
1
n

n∑
i=1

Loss(yi, h(xi))+
Complexity penalty︷ ︸︸ ︷

ε(n, δ, dk)

where

dk = VC-dimension of model (set of hypothesis) k

δ = Confidence parameter (probability of failure)

• We find model k that has the lowest bound on the expected

loss
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Structural risk minimization cont’d

• For our zero-one loss (classification error), we can derive the

following complexity penalty (Vapnik 1995):

ε(n, δ, d) =

√
dV C(log(2n/dV C) + 1) + log(1/(4δ))

n

1. This is an increasing function of dV C

2. Increases as δ decreases

3. Decreases as a function of n

(this is not the only choice...)
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Structural risk minimization cont’d

• Competition of terms...

1. Empirical loss decreases with increasing dV C

2. Complexity penalty increases with increasing dV C

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Empirical fit 

Model score 

Complexity penalty 

• We find the minimum of the model score (bound).
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Structural risk minimization: example

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

linear 2nd order polynomial

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

4th order polynomial 8th order polynomial

Tommi Jaakkola, MIT AI Lab 14



Structural risk minimization: example cont’d

• Number of training examples n = 50, confidence parameter

δ = 0.05.

Model dV C Empirical fit Complexity penalty ε(n, δ, dV C)
1st order 3 0.06 0.5501

2nd order 6 0.06 0.6999

4th order 15 0.04 0.9494

8th order 45 0.02 1.2849

• Structural risk minimization would select the simplest (linear)

model in this case.
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Topics

• Complexity, compression, and model selection

– description length

– minimum description length principle
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Model selection and data compression

• We can alternatively view model selection as a problem of

finding the best way of communicating the available data

We have to communicate both the data and the method

that we used to compress the data

The communication cost in bits depends on how well the

model can predict the data as well as how hard it is to

describe the model itself (complexity)

Total # of bits = bits to describe the data given the model

+ bits to describe the model
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Description length

• How many bits do we need to communicate in order to

specify the outcome of a random variable with 8 possible

values?

Assume P (y = 1) = . . . = P (y = 8) = 1/8

1st bit

2nd bit

3rd bit

1 2 3 4 5 6 7 8

We need − log2 P (y) = − log2(1/8) = 3 bits to describe

each value y.
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Description length cont’d

• How many bits do we need to describe

0111111111110111001111111111111110111111

If we assume that the bits {yi} in the sequence are

independent random draws from P , where P (y = 1) = 0.5,

then
40∑

i=1

(− log2 P (yi)) = 40bits

If we assume instead that P (y = 1) = 0.9, then

40∑
i=1

(− log2 P (yi)) ≈ 22bits

• What we assume matters a great deal.
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Description length cont’d

• We can also describe outcomes conditionally, i.e., determine

the number of bits we need to specify y given x

y1 y2 y3 y4 . . .

x1 x2 x3 x4 . . .

Assuming the labels are generated from a conditional

distribution P (y|x, θ), we need∑
i

(− log2 P (yi|xi, θ))

bits to describe the outcomes (labels).

• The actual number of bits will vary considerably as a function

of the parameters θ.
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Description length cont’d

• We can of course find θ̂ ∈ Θ (the maximum likelihood

parameter estimate) that minimizes the number of bits

needed to describe the data∑
i

(
− log2 P (yi|xi, θ̂)

)
but the minimizing θ̂ depends on the data...
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Description length cont’d

• In addition to describing the data using θ̂, which costs us∑
i

(
− log2 P (yi|xi, θ̂)

)
bits,

we have to describe or communicate θ̂.

total DL = DL of data using θ̂ + DL of θ̂

• The description length of the parameters θ̂ depends on the

model (the set of distributions we are considering)

– the more choices we have, the more bits it takes to describe

any specific selection
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How to describe the parameters

• We need to encode the parameters up to a finite precision

δk = 1/2k, i.e., use k significant bits (we assume here that

the precision is the same for all parameters)

• With the help of a prior density p(θ), it takes us roughly

speaking

− log2

(
p(θδk

)δd
k

)
bits to describe any finite precision choice θδk

. Here d is the

dimensionality of the parameter vector θ.
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How to describe the parameters cont’d

• We also need to communicate our choice of precision or k.

This takes us

log∗2(k) = log2(k) + log2 log2(k) + . . .

bits.
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Description length

• The total description length – bits needed to communicate

the data – is given by the minimum of∑
i

(
− log2 P (yi|xi, θδk

)
)
− log2

(
p(θδk

)δd
k

)
+ log∗2(k)

where the minimization is taken with respect to finite

precision choices θδk
as well as the number of significant

bits k.
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