
Machine learning: lecture 14

Tommi S. Jaakkola

MIT AI Lab

tommi@ai.mit.edu

Topics

• Non-parametric density estimation

– Parzen windows

• Clustering

– mixture models, k-means

– agglomerative hierarchical clustering

– Markov random walk and spectral clustering

– semi-supervised clustering (next lecture)

Tommi Jaakkola, MIT AI Lab 2

Beyond parametric density models

• More mixture densities

• We can approximate almost any distribution by including

more and more components in the mixture model

p(x|θ) =
k∑

j=1

pj p(x|µj,Σj)

Tommi Jaakkola, MIT AI Lab 3

Non-parametric densities

• We can even introduce one

mixture component (Gaussian)

per training example

p̂(x;σ2) =
1
n

n∑
i=1

p(x|xi, σ
2 I)

where n is the number of

examples.

Here the covariances are all

equal and spherical; the single

parameter σ2 controls the

smoothness of the resulting

density estimate

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Tommi Jaakkola, MIT AI Lab 4

Histograms

• n training points x1, . . . , xn

The real line divided into

non-overlapping bins

[µj − h, µj + h)

where µj = jh is the center

of the jth bin
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

The resulting density estimate is

p̂n(x) =
1
n
× # of xi in the same bin as x

width of bin containing x

Tommi Jaakkola, MIT AI Lab 5

Naive estimator

• Define a window function w(x):

w(x) =
{

1
2, |x| < 1
0, otherwise

By introducing an additional

parameter h controlling the

window width, we get

the following (naive) density

estimate

p̂n(x;h) =
1
n

n∑
i=1

1
h

w

(
x− xi

h

)
−4 −3 −2 −1 0 1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(here n = 50 and h = 0.02)

Tommi Jaakkola, MIT AI Lab 6

Naive estimator cont’d

• The naive estimator actually converges to the true density

provided that both n →∞ and h → 0 (appropriately).

For a fixed x

p̂n(x;h) =
1
n

n∑
i=1

1
h

w

(
x− xi

h

)
→ 1

2h
P (x− h < X < x + h) as n →∞

→ p(x) as h → 0

Tommi Jaakkola, MIT AI Lab 7

Parzen windows

• Instead of the naive window function, we can put a smooth

Gaussian (or other) bump on each training example

p̂n(x;h) =
1
n

n∑
i=1

1
h

K

(
x− xi

h

)
, where

K(z) = exp(−z2/2)/
√

2π

(this is also known as a kernel

function; very different from

SVM kernels).

• As a result we get a smoother

estimate (n = 50 and h = 0.02
as before) −4 −3 −2 −1 0 1 2 3 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Tommi Jaakkola, MIT AI Lab 8

Parzen windows: variable kernel width

• We can also set the kernel width locally

k-nearest neighbor choice: let

dik be the distance from xi to

its kth nearest neighbor

p̂n(x; k) =
1
n

n∑
i=1

1
dik

K

(
x− xi

dik

)
• The estimate is smoother where

there are only few data points
−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tommi Jaakkola, MIT AI Lab 9

Parzen windows: optimal kernel width

• We still have to set the kernel width h or the number of

nearest neighbors k

• A practical solution: cross-validation

Let p̂n−i(x;h) be a parzen windows density estimate

constructed on the basis of n − 1 training examples leaving

out xi.

We select h (or similarly k) that maximizes the leave-one-out

log-likelihood

CV (h) =
n∑

i=1

log p̂n−i(xi;h)

Tommi Jaakkola, MIT AI Lab 10

Parzen windows: multi-dimensional case

• Multi-dimensional Parzen windows estimate:

p̂parzen(x) =
1
n

n∑
i=1

p(x|xi, σ
2 I)

where n is the number of examples.

• The covariance matrices are all equal and spherical. The

single parameter σ controls the smoothness of the density

estimate

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

Tommi Jaakkola, MIT AI Lab 11

Topics

• Clustering

– mixture models, k-means

– agglomerative hierarchical clustering

– Markov random walk and spectral clustering

– semi-supervised clustering (next lecture)

Tommi Jaakkola, MIT AI Lab 12

Finding structure in the data: clustering

• The definition of “ground truth” often missing

– the results need to be validated either internally (e.g.,

consistency) or externally (e.g., whether clusters make

sense)

x x
xx

x

x
x

x
x x

xxx
x
x

x
x x

xx
x x

x x
xx x

xxx

• Clustering relies crucially on the measure of similarity

– position in “space”, input/output relation, dynamics, etc

Tommi Jaakkola, MIT AI Lab 13

Basic clustering methods

• Flat clustering methods

– e.g., mixture models, k-means clustering

• Hierarchical clustering methods:

1. Top-down (splitting)

– e.g., hierarchical mixture models

2. Bottom-up (merging)

– e.g., hierarchical agglomerative clustering

• Other clustering methods

– spectral clustering

– semi-supervised clustering, etc

Tommi Jaakkola, MIT AI Lab 14

K-means clustering

• The procedure:

1. Pick k arbitrary centroids

(cluster means)

2. Assign each example to its

“closest” centroid (E-step)

3. Adjust the centroids to be

the means of the examples

assigned to them (M-step)

4. Goto step 2 (until no change)

• The algorithm is guaranteed to

converge in a finite number of

iterations

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

Tommi Jaakkola, MIT AI Lab 15

K-means clustering cont’d

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

• K-means clustering corresponds to a Gaussian mixture model

estimation with EM whenever the covariance matrices of the

Gaussian components are set to Σj = σ2 I, for all j and

some fixed small σ2

Tommi Jaakkola, MIT AI Lab 16

Hierarchical (bottom-up) clustering

• Hierarchical agglomerative clustering: we sequentially merge

the pair of “closest” points/clusters

• The procedure

1. Find two closest points (clusters) and merge them

2. Proceed until we have a single cluster (all the points)

• Two prerequisites:

1. distance measure d(xi,xj) between two points

2. distance measure between clusters (cluster linkage)

Tommi Jaakkola, MIT AI Lab 17

Hierarchical (bottom-up) clustering

• A linkage method: we have to be able to measure distances

between clusters of examples Ck and Cl

a) Single linkage:

dkl = min
i∈Ck,j∈Cl

d(xi,xj)

b) Average linkage:

dkl =
1

|Cl| |Ck|
∑

i∈Ck,j∈Cl

d(xi,xj)

c) Centroid linkage:

dkl = d(x̄k, x̄l), x̄l =
1
|Cl|

∑
i∈Cl

xi

Tommi Jaakkola, MIT AI Lab 18

Hierarchical (bottom-up) clustering

• A dendrogram representation of hierarchical clustering

0

0.5

1

1.5

2

2.5

24 30 9 10 2 5 3 27 12 19 1 14 6 16 28 4 18 13 21 7 23 11 22 20 8 15 26 17 29 25

The height of each pair represents the distance between

the merged clusters; the specific linear ordering of points is

chosen for clarity

Tommi Jaakkola, MIT AI Lab 19

Spectral clustering: preliminaries

• Spectral clustering (as described here) relies on a random

walk over the points

We find the random walk via the following steps

1. construct a neighborhood graph

2. assign weights to the edges in the graph

3. define a transition probability matrix based on the weights

• The points are clustered on the basis of the eigenvectors of

the resulting transition probability matrix

Tommi Jaakkola, MIT AI Lab 20

Step 1: neighborhood graph

• We can connect each point to its k-nearest neighbors, or

connect each point to all neighbors within distance ε

−4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

−4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

Tommi Jaakkola, MIT AI Lab 21

Step 2: edge weights

• We assign symmetric non-negative edge weights Wij:

Wij = exp{−β‖xi − xj‖}, if i and j connected

Wij = 0, otherwise

−4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

Note: we do not use a squared distance in the exponent so

that a weight for a path is computed analogously to the edge

weights

Tommi Jaakkola, MIT AI Lab 22

Step 3: transition probability matrix

• Finally, we define a Markov random walk over the

neighborhood graph by constructing a transition probability

matrix from the edge weights

Pij =
Wij

Wi·
, where Wi· =

∑
j

Wij

and
∑

j Pij = 1 for all i.

The random walk proceeds

by successively selecting points

according to j ∼ Pij, where i

specifies the current location

−4 −2 0 2 4 6 8
−2

0

2

4

6

8

10

12

Tommi Jaakkola, MIT AI Lab 23

Random walk: properties

• If we start from i0, the distribution of points it that we end

up in after t steps is given by

i1 ∼ Pi0 i1,

i2 ∼
∑
i1

Pi0,i1Pi1 i2 = [P 2]i0 i2,

i3 ∼
∑
i1

∑
i2

Pi0,i1Pi1 i2Pi2 i3 = [P 3]i0 i3,

· · ·
it ∼ [P t]i0 it

where P t = PP . . . P (t matrix products) and [·]ij denotes

the i, j component of the matrix.

Tommi Jaakkola, MIT AI Lab 24

Random walk: properties

• The distributions of points we end up in after t steps converge

as t increases. If the graph is connected, the resulting

distribution is independent of the starting point

Even for large t, the transition probabilities [P t]ij have a

slightly higher probability of transitioning within “clusters”

than across; we want to recover this effect from

eigenvalues/vectors

−4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

Tommi Jaakkola, MIT AI Lab 25

details in the next lecture...

Tommi Jaakkola, MIT AI Lab 26

