Machine learning: lecture 14

Tommi S. Jaakkola MIT AI Lab *tommi@ai.mit.edu*

Topics

- Non-parametric density estimation
 - Parzen windows
- Clustering
 - mixture models, k-means
 - agglomerative hierarchical clustering
 - Markov random walk and spectral clustering
 - semi-supervised clustering (next lecture)

Beyond parametric density models

• More mixture densities

• We can approximate almost any distribution by including more and more components in the mixture model

$$p(\mathbf{x}|\theta) = \sum_{j=1}^{k} p_j p(\mathbf{x}|\mu_j, \Sigma_j)$$

Non-parametric densities

 We can even introduce one mixture component (Gaussian) per training example

$$\hat{p}(\mathbf{x};\sigma^2) = \frac{1}{n} \sum_{i=1}^n p(\mathbf{x}|\mathbf{x}_i,\sigma^2 I)$$

where n is the number of examples.

Here the covariances are all equal and spherical; the single parameter σ^2 controls the smoothness of the resulting density estimate

Histograms

• n training points x_1, \ldots, x_n

The real line divided into non-overlapping bins

$$[\mu_j - h, \mu_j + h)$$

where $\mu_j = jh$ is the center of the j^{th} bin

The resulting density estimate is

$$\hat{p}_n(x) = \frac{1}{n} \times \frac{\# \text{ of } x_i \text{ in the same bin as } x}{\text{width of bin containing } x}$$

Naive estimator

• Define a window function w(x):

$$w(x) = \begin{cases} \frac{1}{2}, & |x| < 1\\ 0, & \text{otherwise} \end{cases}$$

By introducing an additional parameter h controlling the window width, we get the following (naive) density estimate

$$\hat{p}_n(x;h) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} w\left(\frac{x-x_i}{h}\right)$$

(here
$$n = 50$$
 and $h = 0.02$)

Naive estimator cont'd

• The naive estimator actually converges to the true density provided that both $n \to \infty$ and $h \to 0$ (appropriately). For a fixed x

$$\begin{split} \hat{p}_n(x;h) &= \frac{1}{n} \sum_{i=1}^n \frac{1}{h} w\left(\frac{x-x_i}{h}\right) \\ &\to \frac{1}{2h} P(x-h < X < x+h) \quad \text{as } n \to \infty \\ &\to p(x) \quad \text{as } h \to 0 \end{split}$$

Parzen windows

 Instead of the naive window function, we can put a smooth Gaussian (or other) bump on each training example

$$\hat{p}_n(x;h) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{x-x_i}{h}\right), \text{ where }$$

- $K(z) = \exp(-z^2/2)/\sqrt{2\pi}$ (this is also known as a *kernel function*; very different from SVM kernels).
- As a result we get a smoother estimate (n = 50 and h = 0.02 as before)

Parzen windows: variable kernel width

• We can also set the kernel width locally

k-nearest neighbor choice: let d_{ik} be the distance from x_i to its k^{th} nearest neighbor

$$\hat{p}_{n}(x;k) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_{ik}} K\left(\frac{x-x_{i}}{d_{ik}}\right) \int_{0}^{0}$$

• The estimate is smoother where there are only few data points

Parzen windows: optimal kernel width

- We still have to set the kernel width h or the number of nearest neighbors k
- A practical solution: cross-validation

Let $\hat{p}_{n-i}(x;h)$ be a parzen windows density estimate constructed on the basis of n-1 training examples leaving out x_i .

We select h (or similarly k) that maximizes the leave-one-out log-likelihood

$$CV(h) = \sum_{i=1}^{n} \log \hat{p}_{n-i}(x_i; h)$$

Parzen windows: multi-dimensional case

• Multi-dimensional Parzen windows estimate:

$$\hat{p}_{parzen}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} p(\mathbf{x} | \mathbf{x}_i, \sigma^2 I)$$

where n is the number of examples.

• The covariance matrices are all equal and spherical. The single parameter σ controls the smoothness of the density estimate

Topics

- Clustering
 - mixture models, k-means
 - agglomerative hierarchical clustering
 - Markov random walk and spectral clustering
 - semi-supervised clustering (next lecture)

Finding structure in the data: clustering

- The definition of "ground truth" often missing
 - the results need to be validated either internally (e.g., consistency) or externally (e.g., whether clusters make sense)

- Clustering relies crucially on the measure of similarity
 - position in "space", input/output relation, dynamics, etc

Basic clustering methods

- Flat clustering methods
 - e.g., mixture models, k-means clustering
- Hierarchical clustering methods:
 - 1. Top-down (splitting)
 - e.g., hierarchical mixture models
 - 2. Bottom-up (merging)
 - e.g., hierarchical agglomerative clustering
- Other clustering methods
 - spectral clustering
 - semi-supervised clustering, etc

K-means clustering

- The procedure:
 - 1. Pick k arbitrary centroids (cluster means)
 - 2. Assign each example to its "closest" centroid (**E-step**)
 - Adjust the centroids to be the means of the examples assigned to them (M-step)
 - 4. Goto step 2 (until no change)
- The algorithm is guaranteed to converge in a finite number of iterations

K-means clustering cont'd

• K-means clustering corresponds to a Gaussian mixture model estimation with EM whenever the covariance matrices of the Gaussian components are set to $\Sigma_j = \sigma^2 I$, for all j and some fixed small σ^2

Hierarchical (bottom-up) clustering

- Hierarchical agglomerative clustering: we sequentially merge the pair of "closest" points/clusters
- The procedure
 - 1. Find two closest points (clusters) and merge them
 - 2. Proceed until we have a single cluster (all the points)
- Two prerequisites:
 - 1. distance measure $d(\mathbf{x}_i, \mathbf{x}_j)$ between two points
 - 2. distance measure between clusters (cluster linkage)

Hierarchical (bottom-up) clustering

A *linkage* method: we have to be able to measure distances between clusters of examples C_k and C_l
 a) Single linkage:

$$d_{kl} = \min_{i \in C_k, j \in C_l} d(\mathbf{x}_i, \mathbf{x}_j)$$

b) Average linkage:

$$d_{kl} = \frac{1}{|C_l| |C_k|} \sum_{i \in C_k, j \in C_l} d(\mathbf{x}_i, \mathbf{x}_j)$$

c) Centroid linkage:

$$d_{kl} = d(\bar{\mathbf{x}}_k, \bar{\mathbf{x}}_l), \quad \bar{\mathbf{x}}_l = \frac{1}{|C_l|} \sum_{i \in C_l} \mathbf{x}_i$$

Hierarchical (bottom-up) clustering

• A dendrogram representation of hierarchical clustering

The height of each pair represents the distance between the merged clusters; the specific linear ordering of points is chosen for clarity

Spectral clustering: preliminaries

 Spectral clustering (as described here) relies on a random walk over the points

We find the random walk via the following steps

- 1. construct a neighborhood graph
- 2. assign weights to the edges in the graph
- 3. define a transition probability matrix based on the weights
- The points are clustered on the basis of the eigenvectors of the resulting transition probability matrix

Step 1: neighborhood graph

• We can connect each point to its k-nearest neighbors, or connect each point to all neighbors within distance ϵ

Step 2: edge weights

• We assign symmetric non-negative edge weights W_{ij} :

 $W_{ij} = \exp\{-\beta \|\mathbf{x}_i - \mathbf{x}_j\|\}, \text{ if } i \text{ and } j \text{ connected}$ $W_{ij} = 0, \text{ otherwise}$

Note: we do not use a squared distance in the exponent so that a weight for a path is computed analogously to the edge weights

Step 3: transition probability matrix

 Finally, we define a Markov random walk over the neighborhood graph by constructing a transition probability matrix from the edge weights

$$P_{ij} = rac{W_{ij}}{W_{i\cdot}}, \;\; ext{where} \; W_{i\cdot} = \sum_j W_{ij}$$

and $\sum_{j} P_{ij} = 1$ for all i.

The random walk proceeds by successively selecting points according to $j \sim P_{ij}$, where ispecifies the current location

Random walk: properties

• If we start from i_0 , the distribution of points i_t that we end up in after t steps is given by

$$i_{1} \sim P_{i_{0} i_{1}},$$

$$i_{2} \sim \sum_{i_{1}} P_{i_{0}, i_{1}} P_{i_{1} i_{2}} = [P^{2}]_{i_{0} i_{2}},$$

$$i_{3} \sim \sum_{i_{1}} \sum_{i_{2}} P_{i_{0}, i_{1}} P_{i_{1} i_{2}} P_{i_{2} i_{3}} = [P^{3}]_{i_{0} i_{3}},$$

$$\dots$$

$$i_{t} \sim [P^{t}]_{i_{0} i_{t}}$$

where $P^t = PP \dots P$ (t matrix products) and $[\cdot]_{ij}$ denotes the i, j component of the matrix.

Random walk: properties

• The distributions of points we end up in after t steps converge as t increases. If the graph is connected, the resulting distribution is independent of the starting point

Even for large t, the transition probabilities $[P^t]_{ij}$ have a slightly higher probability of transitioning within "clusters" than across; we want to recover this effect from eigenvalues/vectors

details in the next lecture...