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Topics

e Clustering
— Markov random walk and spectral clustering
— semi-supervised clustering

e Structured probability models
— Markov models
— Hidden markov models (next lecture)
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Spectral clustering: review

e The spectral clustering method we define relies on a random
walk representation over the points. We construct this in
three steps

1. a nearest neighbor graph

2. similarity weights on the edges:

Wi; = exp{—08||x; — x| } )

where W;; = 1 and the weight is °
zero for non-edges.

3. transition probability matrix of

Py =Wij/ Yy Wiy 2
;7
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Properties of the random walk

e |f we start from g, the distribution of points ¢; that we end
up in after t steps is given by

11~ b

071

7:3 ~ Z Z on zlpzl ’LQP'LQ 13 [PS]ZO 139

where P* = PP ... P (t matrix products) and [-];; denotes
the 7, 7 component of the matrix.
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Random walk and clustering

e Thedistributions of points we end up in after ¢ steps converge
as t increases. If the graph is connected, the resulting
distribution is independent of the starting point

Even for large t, the transition probabilities [P];; have a
slightly higher probability of transitioning within “clusters”
than across; we want to recover this effect from
eigenvalues/vectors
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Eigenvalues/vectors and spectral clustering

o Let W be the matrix with components W;; and D a diagonal
matrix such that D;;, = Zj Wi;. Then

P=D'W

e To find out how P? behaves for large t it is useful to examine
the eigen-decomposition of the following symmetric matrix

D_%WD_% = Alzlzip + )\QZQZQT + ...+ )\nznzg

where the ordering is such that [A{| > [Ao| > ... > |\,
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Eigenvalues/vectors cont’d
e The symmetric matrix is related to P* since
(D 2WD™2)... (D 2WD %)= D2(P---P) D2

This allows us to write the t step transition probability matrix
in terms of the eigenvalues/vectors of the symmetric matrix

1

t
P! = Dz (D—%WD—%> D

l\Dlr—k

= D~ ()\tzlzl + Nozoza + ...+ )\%znzz:) D2

where A\ = 1 and

P® =D"2 (zlz{> D2
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Eigenvalues/vectors and spectral clustering

e \We are interested in the largest correction to the asymptotic
limit

P~ P® + D2 (Ag ZQZ;F) D2

Note: [z2z3 |:; = 22:22; and thus the largest correction term
increases the probability of transitions between points that
share the same sign of z5; and decreases transitions across
points with different signs

e Binary spectral clustering: we divide the points into clusters
based on the sign of the elements of z,

z9; > 0 = cluster 1, otherwise cluster 0
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Spectral clustering: example
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Spectral clustering: example cont’d
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Semi-supervised clustering

e Let's assume we have some additional relevance information
about the examples to be clustered

X Training example (e.g., a text document)
Y Relevance variable (e.g., a word)
P(y|x;) Relevance information (e.g., word distribution)

wheret =1,...,n.

e \We wish to cluster the documents into larger groups without
loosing information about words contained in the documents

documents with similar word frequencies should be merged
into a single cluster
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Semi-supervised clustering cont’d

e We cluster the examples {x;} on the basis of { P(y|x;)}, the
predictive distributions

e For any cluster C' we define the predictive word distribution
based on randomly picking a document in the cluster

A . 1 .
Ply=jlC) = @ZP(?J=J\X¢)
1eC
A €]

P(C) =

n
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Semi-supervised clustering cont’d

e [he distance between the clusters measures how much
iInformation we loose about the words if the clusters are

merged
C C
d(Cy,Cy) = Cil + |Ci - I(y; cluster identity )
n
P(y|C1 + C2)
P(y|C1) P(ylC2)
P(y[x1)
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Semi-supervised clustering cont’d

e [The distance between the clusters measures how much
iInformation we loose about the words if the clusters are

merged

Ci| + |C .

n

d(Cy,Cy) = I(y; cluster identity )

where

I(y; cluster identity ) =
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Semi-supervised clustering: example

e Suppose we have a set of labeled examples
(X17y1)7°°°7(xn7yn)

e \We can take the label as the relevance variable.
P(y|x;) =1, if y = y; and zero otherwise
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Topics

e Structured probability models
— Markov models
— Hidden markov models (next lecture)
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Markov models

e Often we want to model dynamical systems, not just
individual examples

1. Speech/language processing

2. Human behavior (e.g., user modeling)
3. Modeling physical /biological processes
4. Stock market etc.

e We need to define a class of probability models that we can
estimate from observed behavior of the dynamical system
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Markov chain: definition

e We define here a finite state Markov chain (stochastic finite
state machine)

1. States: s € {1,...,m}, where m is finite.
2. Starting state: The starting state sg may be fixed or drawn
from some a priori distribution Py(sg).

3. Transitions (dynamics): we define how the system
transitions from the current state s; to the next state
St+1

The transitions satisfy the first order Markov property:

P(3t+1‘3ta§t—la SEE 39) = P1(st+1]st)
past
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Markov chain cont’d

e The resulting stochastic system generates a sequence of
states

Sog — S1 — S92 — ...

where sq is drawn from Py(sg) and each s;11 from one step
transition probabilities P;(s¢11]S¢)

e We can represent the Markov chain as a state transition
diagram
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Markov chain: example

e [he states correspond to words in a sentence

e [he transitions are defined in terms of successive words in a
sentence

Example: a particular realization of the state sequence
So —> S1 — S92 — 83 — ...

might be

This —is — a — boring — ...

e |s Markov chain an appropriate model?
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