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Topics

• Structured probability models

– Markov models

– Hidden markov models
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Markov chain: review

• A first order (homogeneous) Markov chain:

P (s)0

. .
 .

 tP (s  | s    ) t−1

P (s)0

. .
 .

. .
 .

. .
 .

1

• The initial state s0 is drawn from P0(s0). Successive

states are drawn from the one step transition probabilities

P1(st+1|st)
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Markov chain: properties
 tP (s  | s    ) t−1

P (s)0

. .
 .

. .
 .

. .
 .

1

s0 → s1 → s2 → . . .

• If there exists a finite k such that any state i can lead to

any other state j after exactly k steps, the markov chain is

ergodic:

P (st+k = j|st = i) > 0 for all i, j and some finite k
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Markov chains

• Problems we have to solve

1. Prediction

2. Estimation

• Prediction: what is the probability distribution over the

possible states st+k at time t + k if we start from st = i?

P1(st+1|st = i)

P2(st+2|st = i) =
∑
st+1

P1(st+1|st = i) P1(st+2|st+1)

· · ·
Pk(st+k|st = i) =

∑
st+k−1

Pk−1(st+k−1|st = i) P1(st+k|st+k−1)

where Pk(s′|s) is the k-step transition probability matrix.
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Markov chain: estimation

• We need to estimate the initial state distribution P0(s0) and

the transition probabilities P1(s′|s)
• Estimation from L observed sequences of different lengths

s
(1)
0 → s

(1)
1 → s

(1)
2 → . . . → s(1)

n1

. . .

s
(L)
0 → s

(L)
1 → s

(L)
2 → . . . → s(L)

nL

Maximum likelihood estimates (observed fractions)

P̂0(s0 = i) =
1
L

L∑
l=1

δ(s(l)
0 , i)

where δ(x, y) = 1 if x = y and zero otherwise
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Markov chain: estimation

s
(1)
0 → s

(1)
1 → s

(1)
2 → . . . → s(1)

n1

. . .

s
(L)
0 → s

(L)
1 → s

(L)
2 → . . . → s(L)

nL

• The transition probabilities are obtained as observed fractions

of transitions out of a specific state

Joint estimate over successive states

P̂s,s′(s = i, s′ = j) =
1

(
∑L

l=1 nl)

L∑
l=1

nl−1∑
t=0

δ(s(l)
t , i)δ(s(l)

t+1, j)

and the transition probability estimates

P̂1(s′ = j|s = i) =
P̂s,s′(s = i, s′ = j)∑
k P̂s,s′(s = i, s′ = k)
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Markov chain: estimation

• Can we simply estimate Markov chains from a single long

sequence?

s0 → s1 → s2 → . . . → sn

– Ergodicity?

– What about the initial state distribution P̂0(s0)?
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Clustering by dynamics

• We can cluster time course signals by means of comparing

their dynamics, where the dynamics is captured by a Markov

chain model

– system behavior monitoring (anomaly detection)

– biosequencies

etc.

• There are still many ways of using the Markov chain models

for clustering (e.g., what is the clustering metric?)

• The approach we follow here is to derive a criterion for

determining whether two (or more) sequences should be in

the same cluster
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Cluster criterion

• How can we tell whether two arbitrary sequences

S(1) = {s(1)
0 , . . . , s(1)

n1
} and S(2) = {s(2)

0 , . . . , s(2)
n2
}

should be in the same cluster?

• We can compare (approximate) description lengths of either

encoding the sequencies separately or jointly

DL(1) + DL(2) >
< DL(1+2)

where DL(1+2) uses the same Markov chain for both

sequencies while DL(1) and DL(2) are based on different

models.
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Cluster criterion cont’d

• Approximate description lengths:

DL(1) + DL(2) = − log P (S(1)|θ̂1) +
d

2
log(n1)

− log P (S(2)|θ̂2) +
d

2
log(n2)

DL(1+2) = − log P (S(1)|θ̂) − log P (S(2)|θ̂)

+
d

2
log(n1 + n2)

where the maximum likelihood parameter estimates θ̂1, θ̂2,

and θ̂ each include the initial state distribution and the

transition probabilities; d = 3 for binary sequences.

• We are essentially testing here whether the two sequencies

have the same first order Markov dynamics
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Simple example

• Four binary sequences of length 50:

1. 0010011001000101000001000011101101010100...
2. 0101111110100110101000001000000101011001...
3. 1101011000000110110010001101111101011101...
4. 1101010111101011110111101101101101000101...

Evaluations:

DL(1) + DL(2) − DL(1+2) = 6.6 bits

DL(1+2) + DL(3+4) − DL(1+2+3+4) = −0.9 bits

Agglomerative hierarchical clustering with Euclidean distance

would give (((2, 3), 4), 1)

Tommi Jaakkola, MIT AI Lab 12



Beyond Markov chains

• Potential problems with using Markov chains

– if the state is continuous

– if we cannot fully determine what the current state is (e.g.,

due to noisy observations)

– if the state is an abstraction and never directly observable

• We need to augment the markov chain with a model that

relates the states to observables
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Hidden Markov models

• A hidden Markov model (HMM) is model where we generate

a sequence of outputs in addition to the Markov state

sequence

s0

↓
x0

→ s1

↓
x1

→ s2

↓
x2

→ . . .

– number of states m

– initial state distribution P0(s0)
– state transition model P1(st+1|st)
– output model Po(xt|st) (discrete or continuous)

• This is a latent variable model in the sense that we will only

observe the outputs {x0,x1, . . . ,xn}; the state sequence

remains “hidden”
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HMM example

• Two states 1 and 2; observations are tosses of unbiased coins

P0(s = 1) = 0.5, P0(s = 2) = 0.5

P1(s′ = 1|s = 1) = 0, P1(s′ = 2|s = 1) = 1

P1(s′ = 1|s = 2) = 0, P1(s′ = 2|s = 2) = 1

Po(x = heads|s = 1) = 0.5, Po(x = tails|s = 1) = 0.5

Po(x = heads|s = 2) = 0.5, Po(x = tails|s = 2) = 0.5

1 2

• This model is unidentifiable in the sense that the particular

hidden state Markov chain has no effect on the observations
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HMM example: biased coins

• Two states 1 and 2; outputs are tosses of biased coins

P0(s = 1) = 0.5, P0(s = 2) = 0.5

P1(s′ = 1|s = 1) = 0, P1(s′ = 2|s = 1) = 1

P1(s′ = 1|s = 2) = 0, P1(s′ = 2|s = 2) = 1

Po(x = heads|s = 1) = 0.25, Po(x = tails|s = 1) = 0.75

Po(x = heads|s = 2) = 0.75, Po(x = tails|s = 2) = 0.25

1 2

• What type of output sequences do we get from this HMM

model?
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HMM example

• Continuous output model: x = [x1, x2], Po(x|s) is a

Gaussian with mean and covariance depending on the

underlying state s. Each state is initially equally likely.

1 2

34

• How does this compare to a mixture of four Gaussians model?
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HMM problems

• There are several problems we have to solve

1. How do we evaluate the probability that our model

generated the observation sequence {x0,x1, . . . ,xn}?
– forward-backward algorithm

2. How do we uncover the most likely hidden state sequence

corresponding to these observations?

– dynamic programming

3. How do we adapt the parameters of the HMM to better

account for the observations?

– the EM-algorithm
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Probability of observed data

• In principle computing the probability of the observed

sequence involves summing over exponentially many possible

hidden state sequences

P (x0, . . . ,xn) =

∑
s0,...,sn

Prob. of obs. and a hidden state sequence︷ ︸︸ ︷
P0(s0)P1(x0|s0) . . . P1(sn|sn−1)Po(xn|sn)

s0

↓
x0

→ s1

↓
x1

→ s2

↓
x2

→ . . . → sn−1

↓
xn−1

→ sn

↓
xn

• We can, however, exploit the structure of the model to

evaluate the probability much more efficiently
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Forward-backward algorithm

s0

↓
x0

→ s1

↓
x1

→ s2

↓
x2

→ . . . → sn−1

↓
xn−1

→ sn

↓
xn

• Forward (predictive) probabilities αt(i):

αt(i) = P (x0, . . . ,xt, st = i)
αt(i)∑
j αt(j)

= P (st = i|x0, . . . ,xt)

• Backward propabilities βt(i):

βt(i) = P (xt+1, . . . ,xn|st = i)

(evidence about the current state from future observations)

• Both can be updated recursively
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Recursive forward updates

s0 s2s1

1

2

x0 = heads, x1 = tails, x2 = heads

• Forward recursion: αt(i) = P (x0, . . . ,xt, st = i)

α0(1) = P0(1)Po(heads|1)

α0(2) = P0(2)Po(heads|2)

α1(1) =
[
α0(1)P1(1|1) + α0(2)P1(1|2)

]
Po(tails|1)

α1(2) =
[
α0(1)P1(2|1) + α0(2)P1(2|2)

]
Po(tails|2)
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Recursive forward updates cont’d

s0 s2s1

1

2

x0 = heads, x1 = tails, x2 = heads

• Recursive updates for αt(i) = P (x0, . . . ,xt, st = i):

α0(i) = P0(s0 = i) Po(x0|s0 = i)

αt(i) =
[∑

j

αt−1(j) P1(st = i|st−1 = j)
]
Po(xt|st = i)
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Recursive backward updates

s0 s2s1

1

2

x0 = heads, x1 = tails, x2 = heads

• Backward recursion: βt(i) = P (xt+1, . . . ,xn|st = i)

β2(1) = 1

β2(2) = 1

β1(1) = P1(1|1)Po(heads|1)β2(1) + P1(2|1)Po(heads|2)β2(2)

β1(2) = P1(1|2)Po(heads|1)β2(1) + P1(2|2)Po(heads|2)β2(2)
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Recursive backward updates cont’d

s0 s2s1

1

2

x0 = heads, x1 = tails, x2 = heads

• Recursive updates for βt(i) = P (xt+1, . . . ,xn|st = i):

βn(i) = 1

βt−1(i) =
∑

j

P1(st = j|st−1 = i)Po(xt|st = j) βt(j)
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