Machine learning: lecture 18

Tommi S. Jaakkola MIT AI Lab *tommi@ai.mit.edu*

Topics

- Hidden markov models
 - dynamic programming, examples
- Representation and graphical models
 - variables and states
 - graphical models

Dynamic programming: review

• Let $\{s_0^{(t,i)}, \ldots, s_t^{(t,i)} = i\}$ be the most likely state sequence given $\mathbf{x}_0, \ldots, \mathbf{x}_t$ that is forced to end up in $s_t = i$ at time t. Then

$$\delta_t(i) = P(\mathbf{x}_0, \dots, \mathbf{x}_t, s_0^{(t,i)}, \dots, s_t^{(t,i)})$$

 We can evaluate these probabilities recursively by replacing each "sum" with a "max" in the forward propagation:

$$\delta_0(i) = P_0(i)P_o(\mathbf{x}_t | s_0 = i),$$

$$\delta_t(i) = \max_j \left\{ \delta_{t-1}(j)P_1(s_t = i | s_{t-1} = j) \right\} \times P_o(\mathbf{x}_t | s_t = i)$$

Dynamic programming: review

• We can recover the most likely hidden state sequence from $\{\delta_t(\cdot)\}$ by retrospectively examining the "max" choices made in evaluating these probabilities

We find the end state s_n^* of the most likely state sequence by maximizing over the probabilities associated with the most likely state sequences forced to land on different states at t = n:

$$s_n^* = \operatorname*{arg\,max}_j \delta_n(j)$$

The recovery of the remaining states along the most likely path can be done recursively (backwards):

$$s_t^* = \arg\max_j \left\{ \delta_t(j) P_1(s_{t+1} = s_{t+1}^* | s_t = j) \right\}$$

Dynamic programming: review

• The most likely path has the property that any partial path is also optimal:

If $s_t^* = i$ then $\{s_0^*, \ldots, s_t^*\}$ is also the most likely state sequence forced to end up in $s_t = i$ at time t given only $\mathbf{x}_0, \ldots, \mathbf{x}_t$.

Dynamic programming: example

• Same example as in the EM case (3 states, Gaussian outputs)

• The most likely hidden state sequence $\{s_0^*,\ldots,s_n^*\}$ need not agree with the most likely states derived from the posterior marginals $\gamma_t(i)$

Example cont'd

Examples: speech

• We can annotate or parse speech signals by evaluating the most likely hidden state sequence

A speech spectrogram example (refs)

Never touch a snake with your bare hands

Examples: alignment

• A "linear" HMM can be used to align sequences of observations

Topics

- Representation and graphical models
 - variables and states
 - graphical models

What is a good representation?

- Properties of good representations
 - 1. Explicit
 - 2. Compact
 - 3. Modular
 - 4. Permits efficient computation
 - 5. etc.

Representing the model structure

- Two possible representations of Markov models:
 - 1. in terms of state diagrams (nodes in the graph correspond to the possible values of the states)

2. in terms of variables (nodes in the graph are variables):

• The representations differ in terms of what aspects of the model are made *explicit*

Model structure cont'd

- Case 1: *sparse transition* structure
 - 1. State transition diagram is *explicit*

2. Representation in terms of variables leaves this implicit

Model structure cont'd

- Case 2: successive states are *independent of each other*
 - 1. State transition diagram is fully connected

2. Representation in terms of variables is *explicit*

Model structure cont'd

- Case 3: time series signals such as music may involve multiple relatively independent underlying processes operating at different *time scales*
 - 1. State transition diagram (argh #\$& ...)
 - 2. In terms of variables (graph model)

Graphical models

 Graph representions of probability models in terms of variables are known as graphical models

- Different types of graph models differ in terms of how we represent *dependencies* and *independencies* among the variables
 - 1. Bayesian networks (natural for "causal" relations)
 - 2. Markov random fields (natural for physical or symmetric relations)
 - 3. etc.

Bayesian networks: examples

A Markov chain:

A hidden Markov model:

Qualitative inference

• The graph provides a qualitative description of the domain

Qualitative inference

• The graph provides a qualitative description of the domain

Note that the induced dependence pertains to our beliefs about the outcomes of the coin tosses

Qualitative inference cont'd

 Just by looking at the graph, we can determine what we can and cannot ignore (why important?)
 Marginal independence of "Earthquake" and "Burglary"

Qualitative inference cont'd

• Induced dependence:

Two levels of description

- Graphical models need two levels of specification
 - 1. Qualitative properties captured by a graph

2. Quantitative properties specified by the associated probability distribution

$$P(x_1, x_2, x_3) = P(x_1) P(x_2) P(x_3 | x_1, x_2)$$

where, e.g.,

$$P(x_1 = heads) = 0.5$$
$$P(x_3 = same | x_1 = heads, x_2 = tails) = 0$$

More examples

Mixture model hierarchical mixture model

- i and j correspond to the discrete choices in the mixture model
- x is the (vector) variable whose density we wish to model
- We cannot tell what the component distributions $P(\mathbf{x}|i)$ are based on the graph alone