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Topics

• Hidden markov models

– dynamic programming, examples

• Representation and graphical models

– variables and states

– graphical models
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Dynamic programming: review

s0

↓
x0

→ s1

↓
x1

→ s2

↓
x2

→ . . . → sn−1

↓
xn−1

→ sn

↓
xn

• Let {s(t,i)
0 , . . . , s

(t,i)
t = i} be the most likely state sequence

given x0, . . . ,xt that is forced to end up in st = i at time t.

Then

δt(i) = P (x0, . . . ,xt, s
(t,i)
0 , . . . , s

(t,i)
t )

• We can evaluate these probabilities recursively by replacing

each “sum” with a “max” in the forward propagation:

δ0(i) = P0(i)Po(xt|s0 = i),

δt(i) = max
j

{
δt−1(j)P1(st = i|st−1 = j)

}
× Po(xt|st = i)
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Dynamic programming: review

• We can recover the most likely hidden state sequence from

{δt(·)} by retrospectively examining the “max” choices made

in evaluating these probabilities

We find the end state s∗n of the most likely state sequence by

maximizing over the probabilities associated with the most

likely state sequences forced to land on different states at

t = n:

s∗n = argmax
j

δn(j)

The recovery of the remaining states along the most likely

path can be done recursively (backwards):

s∗t = argmax
j

{
δt(j)P1(st+1 = s∗t+1|st = j)

}
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Dynamic programming: review

s0 s2s1

1

2

• The most likely path has the property that any partial path

is also optimal:

If s∗t = i then {s∗0, . . . , s∗t} is also the most likely state

sequence forced to end up in st = i at time t given only

x0, . . . ,xt.
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Dynamic programming: example

• Same example as in the EM case (3 states, Gaussian outputs)
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4

after 0 iterations after 7 iterations

• The most likely hidden state sequence {s∗0, . . . , s∗n} need not

agree with the most likely states derived from the posterior

marginals γt(i)

Tommi Jaakkola, MIT AI Lab 6



Example cont’d
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final ML model, no observations
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Examples: speech

• We can annotate or parse speech signals by evaluating the

most likely hidden state sequence

A speech spectrogram example (refs)

Never touch a snake with your bare hands
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Examples: alignment

• A “linear” HMM can be used to align sequences of

observations

s0 s2s1

1

2

3

4 3 421

1 2 3 4
seq 1

seq 2

seq 3
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Topics

• Representation and graphical models

– variables and states

– graphical models
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What is a good representation?

• Properties of good representations

1. Explicit

2. Compact

3. Modular

4. Permits efficient computation

5. etc.

Tommi Jaakkola, MIT AI Lab 11



Representing the model structure

• Two possible representations of Markov models:

1. in terms of state diagrams (nodes in the graph correspond

to the possible values of the states)

s0 s2s1

1

2

2. in terms of variables (nodes in the graph are variables):

s0

© →
s1

© →
s2

© →

• The representations differ in terms of what aspects of the

model are made explicit
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Model structure cont’d

• Case 1: sparse transition structure

1. State transition diagram is explicit

s0 s2s1

1

2

2. Representation in terms of variables leaves this implicit

s0

© →
s1

© →
s2

© →
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Model structure cont’d

• Case 2: successive states are independent of each other

1. State transition diagram is fully connected

s0 s2s1

1

2

2. Representation in terms of variables is explicit

s0

©
s1

©
s2

©
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Model structure cont’d

• Case 3: time series signals such as music may involve multiple

relatively independent underlying processes operating at

different time scales

1. State transition diagram (argh #$& ...)

2. In terms of variables (graph model)

s
(1)
0

©
↓
©
s
(2)
0

→

→

©
s
(2)
1

→

s
(1)
2

©
↓
©
s
(2)
2

→

→

©
s
(2)
3

→

s
(1)
4

©
↓
©
s
(2)
4

→
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Graphical models

• Graph representions of probability models in terms of

variables are known as graphical models

A mixture model as

a graphical model

i

x

"parent of x"

"child of i"

"i influences x"
"i causes x"
"x depends on i"

• Different types of graph models differ in terms of how

we represent dependencies and independencies among the

variables

1. Bayesian networks (natural for “causal” relations)

2. Markov random fields (natural for physical or symmetric

relations)

3. etc.
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Bayesian networks: examples

A Markov chain:

A hidden Markov model:
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Qualitative inference

• The graph provides a qualitative description of the domain

coin 2coin 1

same or different

x1 = 1st coin toss

x2 = 2nd coin toss

x3 = same?
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Qualitative inference

• The graph provides a qualitative description of the domain

coin 2coin 1

same or different

x1 = 1st coin toss

x2 = 2nd coin toss

x3 = same?

coin 2coin 1

same or different

coin 2coin 1

same or different

Marginal independence Induced dependence

Note that the induced dependence pertains to our beliefs

about the outcomes of the coin tosses
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Qualitative inference cont’d

• Just by looking at the graph, we can determine what we can

and cannot ignore (why important?)

Marginal independence of “Earthquake” and “Burglary”

Radio report

Earthquake Burglary

Alarm

Tommi Jaakkola, MIT AI Lab 20



Qualitative inference cont’d

• Induced dependence:

Radio report

Earthquake Burglary

Alarm

• Explaining away:

Radio report

Earthquake Burglary

Alarm
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Two levels of description

• Graphical models need two levels of specification

1. Qualitative properties captured by a graph

coin 2coin 1

same or different

x1 = first coin toss

x2 = second coin

toss

x3 = same?

2. Quantitative properties specified by the associated

probability distribution

P (x1, x2, x3) = P (x1) P (x2) P (x3|x1, x2)

where, e.g.,

P (x1 = heads) = 0.5

P (x3 = same|x1 = heads, x2 = tails) = 0
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More examples

i

x

i

j

x

Mixture model hierarchical mixture model

• i and j correspond to the discrete choices in the mixture

model

• x is the (vector) variable whose density we wish to model

• We cannot tell what the component distributions P (x|i) are

based on the graph alone
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