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Topics

• Medical diagnosis example cont’d

– three inference problems

• Graphical models and decision theory

– expected utility framework

– influence diagrams

– examples
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Medical diagnosis example: review

• Model and assumptions:

. . .

. . .

Diseases

Findings

d

f

1. Assumptions that are explicit in the graph:

– marginal independence of diseases

– conditional independence of findings

2. Assumptions about the underlying probability distribution:

– causal independence assumptions (noisy-OR conditional

probabilities)
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Joint distribution: review

• The assumptions imply the following joint distribution over

n diseases and m findings

P (f, d) =

[
m∏

i=1

P (fi|dpai
)

]  n∏
j=1

P (dj)


where P (fi = 0|dpai

) = (1− qi0)
∏

j∈pai

(1− qij)dj

and dpai
is the set of diseases associated with finding fi. The

adjustable parameters of this model are qij and P (dj)

. . .

. . .
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Three inference problems

• Given a set of observed findings f∗ = {f∗2 , . . . , f∗k}, we wish

to infer what the underlying diseases are

. . .

. . .

Diseases

Findings

d

f

1. What is the most likely setting of all the underlying disease

variables?

2. What are the marginal posterior probabilities over the

diseases?

3. Which test should we carry out next in order to get the

most information about the diseases?
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Inference problem cont’d

• For the purposes of inferring the presence or absence of the

underlying diseases, we can ignore any findings that remain

unobserved (as if they were not in the model to begin with)

. . .

. . .

Diseases

Findings

d

f

⇒
. . .

. . .

d

f

Findings
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*
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Inference problem cont’d

• What if the findings were not conditionally independent given

the diseases?

d2d1

f1 f2

d3
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First inference problem

• We can try to find the most likely disease configuration given

f∗ via a search algorithm

A naive search algorithm:

1. Start with all the diseases absent d∗1 = 0, . . . , d∗n = 0
2. Successively update the value of each disease variable

to increase the probability P (f∗, d∗) of diseases and the

observed findings

d∗j ← argmax
dj

P (f∗, d∗1, . . . , d
∗
j−1, dj, d

∗
j+1, . . . , d

∗
n)

Why is this naive approach

likely to fail?

. . .

. . .

d

f

Findings

Diseases

*
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First inference problem cont’d

• Exact search may not be very easy...

Findings

Diseases

(this is a small portion of the real QMR-DT)
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Second inference problem

• We wish to find the marginal posterior probabilities of the

diseases given the findings (i.e., the overall probability that

individual diseases are present given the findings)

P (di = 1|f∗) =
P (f∗, di = 1)

P (f∗)
=

∑
d di P (f∗, d)∑

d P (f∗, d)

• This involves summing over all configurations of diseases...

... there are 2600 such disease configurations

• Two possible ways around this:

1. Exploit the model structure (later)

2. Approximate inference (sampling)
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Second inference problem cont’d

• What if we just sampled disease configurations from the

posterior distribution P (d|f∗) and computed the fraction of

times disease di were present?

P (di = 1|f∗) ≈ 1
T

T∑
t=1

dt
i

where each dt = {dt
1, . . . , d

t
n} is an independent sample

drawn from the posterior P (d|f∗)

• The problem is that we cannot easily sample from P (d|f∗)...
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Importance sampling

• We can approximate the infeasible summations over

exponentially many disease configurations via importance

sampling

P (f∗) =
∑

d

P (f∗, d) =
∑

d

Q(d)
P (f∗, d)

Q(d)

= Ed∼Q

{
P (f∗, d)

Q(d)

}
≈ 1

T

T∑
t=1

P (f∗, dt)
Q(dt)

where the disease configurations dt are drawn from the simple

distribution Q(d) (known as a proposal distribution).
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Second inference problem cont’d

• We draw samples from a much simpler proposal distribution

Q(d) and approximate

P (f∗) =
∑

d

P (f∗, d) ≈ 1
T

T∑
t=1

P (f∗, dt)
Q(dt)

P (f∗, di = 1) =
∑

d

di P (f∗, d) ≈ 1
T

T∑
t=1

dt
i

P (f∗, dt)
Q(dt)

where each configuration dt = {dt
1, . . . , d

t
n} is an

independent sample from Q(d)
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Second inference problem cont’d

• We get the desired posterior marginals by taking ratios of

these estimates (known as likelihood weighted sampling)

P (di = 1|f∗) =
P (f∗, di = 1)

P (f∗)
≈

1
T

∑T
t=1 dt

i
P (f∗,dt)

Q(dt)

1
T

∑T
t=1

P (f∗,dt)
Q(dt)
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Second inference problem cont’d

• This actually works... sort of
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The figure shows the overall correlation between the

estimated and exact posterior marginals (in simple cases)
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Third inference problem

• We would like to find out which tests to carry out next

in order to get the most information about the underlying

diseases

. . .

. . .

Diseases

Findings

d

f

• For this we need to know

1. how uncertain the outcomes of the other findings are given

the information we have so far

2. the hypothetical effect of actually observing either outcome

of the new findings

Tommi Jaakkola, MIT AI Lab 16



Third inference problem cont’d

• how uncertain the outcomes of the other findings are given

the information we have so far (f∗)

P (fi|f∗) =
∑

d

P (fi|dpai
) P (d|f∗)

• the hypothetical effect of actually observing either outcome

of the new findings

P (d|fi, f
∗) =

P (d, fi, f
∗)

P (fi, f∗)

for fi = 0, 1.
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Third inference problem cont’d

• We select the test that has the best chance of reducing the

uncertainty about the underlying diseases

• This is the test that has the highest mutual information with

the diseases

I(fi; d|f∗) =
∑

fi=0,1

P (fi|f∗)

[∑
d

P (d|fi, f
∗) log

P (d|fi, f
∗)

P (d|f∗)

]
︸ ︷︷ ︸

the difference between

our uncertainty about the

diseases before and after

observing fi

• The individual terms could be approximated similarly to the

previous sampling method
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Topics

• Graphical models and decision theory

– expected utility framework

– influence diagrams

– examples
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Decision theory: expected utility framework

• To select among alternative courses of action we need to

balance the potential costs/benefits of actions with the

uncertainty that we have about the outcomes of actions,

current situation, etc.

• Expected utility framework: given a probability distribution

P (c) over the uncertain quantities c, we select the action

that maximizes the expected utility:

a∗ = argmax
a∈A

Ec∼P

{
U(c, a)

}
= argmax

a∈A

∑
c

P (c) U(c, a)

where A is the set of available actions and U(c, a) is the

(subjective) utility of choosing action a in context c.

• Influence diagrams are graphical models that incorporate the

notion of actions/decisions and their utility.
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Influence diagrams: basics

U

ac

a∗ = argmax
a∈A

Ec∼P

{
U(c, a)

}
• Basic components:

– decision node(s) (squares) specify the actions we can take

– chance nodes (circles) specify our belief about the values

of variables relevant for decisions

– utility node (diamond) specifies the utility of any decision

in a contex c
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