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Topics

• Graphical models and decision theory

– utilities, expected utility framework

– influence diagrams

– examples

• Exact inference in graphical models

– basics of probabilistic inference

– chains and clustering

– belief propagation and messages
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Background: utility theory

• Utilities provide a numerical scale at which to measure

preferences about alternative outcomes

• For us to be able to cast our preferences as utilities, our

preferences need to satisfy a few (reasonable) conditions:

– “transitivity”: preferring B over A and C over B means

that you also prefer C over A

– “continuity”: for any such A, B, and C, there’s a probability

p such that a lottery where we get A with probability p

and C with probability (1 − p) is equally preferable to B

(a few other perhaps more self-evident assumptions are

needed)
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Background: expected utility framework

• Once we have (subjective) utilities for each available action

and each possible outcome/situation, we can decide which

action we should take

• Expected utility framework:

Given a probability distribution P (c) over all the uncertain

quantities c, we ought to select the action that maximizes

the expected utility:

a∗ = argmax
a∈A

Ec∼P

{
U(c, a)

}
= argmax

a∈A

∑
c

P (c)U(c, a)

where A is the set of available actions and U(c, a) is the

utility of choosing action a in context c.
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Influence diagrams: basics

• Influence diagrams are graphical models that combine beliefs

about uncertain quantities, available actions, and associated

utilities into a common representation

U

ac

a∗ = argmax
a∈A

Ec∼P

{
U(c, a)

}
• Basic components:

– decision node(s) (squares) specify the actions we can take

– chance nodes (circles) specify our belief about the values

of variables relevant for decisions

– utility node (diamond) specifies the utility of any decision

in a contex c
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Influence diagrams: example

• Minimum probability of error classification:

Suppose we know all the class conditional densities p(x|i),
i = 1, . . . ,m, and the prior class probabilities P (i).

U

ax i

The utility U(i, a) = 1 if i = a and zero otherwise (utility is

defined as one minus error).

• We do not have access to class i directly but the uncertainty

about the class label is captured by the posterior P (i|x)
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Example cont’d

U

ax i

We choose the action/class with the highest expected utility

a∗ = argmax
a

Ei∼P (i|x)

{
U(i, a)

}
= argmax

a

m∑
i=1

P (i|x)U(i, a)

= argmax
a

P (a|x)

which is the action that we have previously seen to minimize

the probability of error
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Influence diagrams cont’d

• Our decisions may affect the random quantities (outcomes)

U

ac

(For example, the course you choose to take can influence

the grade you are likely to get)
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Influence diagrams cont’d

• We may expect to know the values of some variables at the

decision time; our “decisions” become responsive strategies

(functions of known quantities)

ai

U

x

(arrows into the decision node(s) denote the information

available at the decision time)

a∗(·) = argmax
a(·)

E(i,x)∼P (i)p(x|i)
{
U(i, a(x))

}
where a(·) is a strategy providing an action a(x) for each x.
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Influence diagrams cont’d

• The resulting strategy will again

yield the minimum probability of

error provided that U(i, a) = 1
when i = a and zero otherwise.

ai

U

x

a∗(·) = argmax
a(·)

∑
i

∫
P (i)p(x|i)U(i, a(x))dx

= argmax
a(·)

∑
i

∫
p(x)P (i|x)U(i, a(x)) dx

= argmax
a(·)

∫
p(x)P (a(x)|x) dx

where the maximum is attained when a∗(x) =
argmaxaP (a|x).
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Influence diagrams cont’d

• A bit more complex example: controlled Markov chain

s1s0 s2

a0 a1 a2

U

U(s0, a0, s1, a1, . . .) =
n∑

t=0

r(st, at)
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Topics

• Exact inference in graphical models

– basics of probabilistic inference

– chains and clustering

– belief propagation and messages
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Nature of probabilistic inference

• Example: a hidden Markov model

P (s0, x0, . . . , sn, xn) = P0(s0)Po(x0|s0)P1(s1|s0) · · ·

x

. . .s

• Given the observation sequence x∗0, . . . , x
∗
n, all the

information about the associated hidden states is already

contained in the joint probability distribution

P (s0, x∗0, . . . , sn, x
∗
n)

• What’s left to do?
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Nature of probabilistic inference

• We have to explicate the relevant information; this involves

propagating information across the graph model

• Forward-backward algorithm:

x

. . .s

Forward step: information from the past about the current

state

Backward step: information from future observations about

the current state

• We want analogous computations for more general graph

models
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Equivalence of graphs

• We want the inference algorithm to exploit the graph

structure (independencies implied by the graph structure)

• Many distinct graphs are equivalent in terms of conditional

independencies and therefore can be treated the same in the

inference algorithm

Example:
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Probabilistic inference: example

• It is always possible to cluster the variables (nodes) into

larger sets and deal with it as before, just on the level of the

sets of variables

Examples:
S0 S1

x

. . .

. . .chain 1

chain 2

x

• A chain is not a very efficient structure in this sense

Tommi Jaakkola, MIT AI Lab 16



Probabilistic inference

• We can generalize forward-backward to operate on a tree

structure rather than a chain

x x

tree as a chain tree propagation
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Belief propagation
• Let’s first adopt a common

notation for the underlying

probability model and the observed

data

ψij(xi, xj) = P (xj|xi)

ψi(xi) = P (xi)

ψj(xj) = 1

ψk(xk) = δ(xk, x̂k)

xi

xj

xk

These “potential functions” are chosen to ensure that

P (x1, . . . , xn, data) =
∏

i

ψi(xi) ·
∏

(i,j)∈edges

ψij(xi, xj)
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Belief propagation cont’d
• We can now define how each node

in the graph should communicate

with upstream and downstream

nodes (neighbors).

A message passing scheme:

1. Initialize messages to 1.

2. Message (information) that j

sends to i is

mj→i(xi) =
∑
xj

ψij(xi, xj)ψj(xj)
∏
l 6=i

ml→j(xj)

xi

xj

xk
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