Machine learning: lecture 21

Tommi S. Jaakkola
MIT Al Lab

tommi@ai.mit.edu



Topics

e Graphical models and decision theory
— utilities, expected utility framework
— influence diagrams
— examples

e Exact inference in graphical models
— basics of probabilistic inference
— chains and clustering
— belief propagation and messages
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Background: utility theory

e Utilities provide a numerical scale at which to measure
preferences about alternative outcomes

e For us to be able to cast our preferences as utilities, our
preferences need to satisfy a few (reasonable) conditions:

— “transitivity”: preferring B over A and C over B means
that you also prefer C over A

— “continuity”: for any such A, B, and C, there's a probability
p such that a lottery where we get A with probability p
and C with probability (1 — p) is equally preferable to B

(a few other perhaps more self-evident assumptions are
needed)
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Background: expected utility framework

e Once we have (subjective) utilities for each available action
and each possible outcome/situation, we can decide which
action we should take

e Expected utility framework:
Given a probability distribution P(c) over all the uncertain
quantities ¢, we ought to select the action that maximizes
the expected utility:
a* = argmax E..p {U(c,a)} = argmax » P(c)U(c,a)

aEA
c

where A is the set of available actions and U(c,a) is the
utility of choosing action a in context c.
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Influence diagrams: basics

e Influence diagrams are graphical models that combine beliefs
about uncertain quantities, available actions, and associated
utilities into a common representation

) [
\

a* = argmax E..p{U(c,a)}

e Basic components:
— decision node(s) (squares) specify the actions we can take
— chance nodes (circles) specify our belief about the values
of variables relevant for decisions
— utility node (diamond) specifies the utility of any decision
In a contex c
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Influence diagrams: example

e Minimum probability of error classification:

Suppose we know all the class conditional densities p(x|i),
i =1,...,m, and the prior class probabilities P(%).
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\

The utility U(¢,a) = 1 if i« = a and zero otherwise (utility is
defined as one minus error).

e We do not have access to class ¢ directly but the uncertainty
about the class label is captured by the posterior P(i|x)

Tommi Jaakkola, MIT Al Lab 6



Example cont’d

e-0) [
\

We choose the action/class with the highest expected utility

a” = argmax F;.p(x) {U(i,a)}

= argmax ZP(i|X)U(i, a)
i=1
= argmax P(a|x)
a
which is the action that we have previously seen to minimize
the probability of error
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Influence diagrams cont’d

e Our decisions may affect the random quantities (outcomes)
ONE

(For example, the course you choose to take can influence
the grade you are likely to get)

Tommi Jaakkola, MIT Al Lab 8



Influence diagrams cont’d

e \We may expect to know the values of some variables at the
decision time; our “decisions’ become responsive strategies
(functions of known quantities)

| ®—> 2

U

(arrows into the decision node(s) denote the information
available at the decision time)

a’(-) = afgle(?tfi E(i x)~P(i)p(x|i) {U(ia G(X))}

where a(-) is a strategy providing an action a(x) for each x.
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Influence diagrams cont’d

e The resulting strategy will again | ®_’ a

yield the minimum probability of
error provided that U(i,a) = 1
when ¢ = a and zero otherwise.

() = argmaxy / P(i)p(x|i) Ui, a(x))dx

— argmax [ p(x) Pla(x)}x) dx

where the maximum is attained when a*(x) =
argmax, P(a|x).
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Influence diagrams cont’d

e A bit more complex example: controlled Markov chain

OOt

50 Y )
U
U(So, Ggy S1,01,...) = r(s¢, at)
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Topics

e Exact inference in graphical models
— basics of probabilistic inference
— chains and clustering
— belief propagation and messages
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Nature of probabilistic inference

e Example: a hidden Markov model

P(S())aj())-. Sn,CEn P() S() P CI}O’SO P1(31|30)
e Given the observatlon sequence :co,...,x;’;, all  the

information about the associated hidden states is already
contained in the joint probability distribution

P(s0, gy -y Sns X))

e What's left to do?
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Nature of probabilistic inference

e \We have to explicate the relevant information; this involves
propagating information across the graph model

e Forward-backward algorithm:
Fo e
@ @ @

Forward step: information from the past about the current

state
Backward step: information from future observations about

the current state

e We want analogous computations for more general graph
models
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Equivalence of graphs

e We want the inference algorithm to exploit the graph
structure (independencies implied by the graph structure)

e Many distinct graphs are equivalent in terms of conditional

independencies and therefore can be treated the same in the
inference algorithm

O~-O~C
O~O~C
O~O~C

Example:
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Probabilistic inference: example

e It is always possible to cluster the variables (nodes) into
larger sets and deal with it as before, just on the level of the
sets of variables

Examples:

S 1

chan

chan

e A chain is not a very efficient structure in this sense
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Probabilistic inference

e We can generalize forward-backward to operate on a tree
structure rather than a chain

tree as a chain tree propagation
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Belief propagation
e Let's first adopt a common
notation for the underlying QXi

probability model and the observed
data /N Xj

)
.) ' CP '
vi(z;) = 1 X

These “potential functions” are chosen to ensure that

P(z1,...,z,,data) = sz(aﬁ@) - H Vij (@i, T))

(i,5)cedges
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Belief propagation cont’d
e \We can now define how each node
in the graph should communicate Xj
with upstream and downstream
nodes (neighbors).

A message passing scheme:

1. Initialize messages to 1.
2. Message (information) that j
sends to 7 is
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