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Topics

e Linear regression
— overfitting, cross-validation
e Additive models
— polynomial regression, other basis functions
e Statistical view of regression
— noise model
— likelihood, maximum likelihood estimation
— limitations

Tommi Jaakkola, MIT Al Lab



Review: generalization
e The “generalization” error
. R
Eay)mp {(y — o — i12)" }

IS a sum of two terms:
1. error of the best predictor in the class

By yy~p {(y — wi — wiz)*}
= min E(:U,y)NP {(y — Wo — w1$)2}

wo, w1

2. and how well we approximate the best linear predictor
based on a limited training set

* * ~ ~ 2
E(ac,y)NP {((wo +wiz) — (o + wﬁ)) }
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Overfitting

e With too few training examples our linear regression model
may achieve zero training error but nevertless has a large
generalization error

6, =) 0 1 2
When the training error no longer bears any relation to the
generalization error the model overfits the data
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Cross-validation

e (Cross-validation allows us to estimate generalization error on
the basis of only the training set

For example, the leave-one-out cross-validation error is given
by

n

1=1

where (w5, ;") are least squares estimates computed
without the i*" training example.
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Extensions of linear regression: additive models

e Our previous results generalize to models that are linear in
the parameters w, not necessarily in the inputs x
1. Simple linear prediction f: R — R

flx;w) = wg + wix

2. mt" order polynomial prediction f: R — R

fle;w) =wo+wiz + ...+ We12™ '+ wpa™

3. Multi-dimensional linear prediction f : R¢ — R
f(x; W) =wg+ w1 + ... +Wg_1Tg_1 + wyry

where x = [z1...29_1 24, d = dim(x)
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Polynomial regression: example

degree = 5 degree = 7
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Polynomial regression: example cont’d
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degree = 5, CV = 442 degree =7, CV = 482.0
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Additive models cont’d

e More generally, predictions are based on a linear combination
of basis functions (features) {¢1(x), ..., ®»m(x)}, where each
di(x) : R — R, and

f(X; W) = Wo + w1¢1(x) + .. T wm—lqu—l(x) =+ wm¢m(x)

e For example:
If ¢;(z) =2, i=1,...,m, then

flo;w) =wo+wiz + ... + W1 2™+ wpa™

It m=d, ¢;(x) =x;,i=1,...,d, then

f(x; W) =wg+ w1 + ...+ Wg_1Tg_1 + Wy
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Additive models cont’d

e Example: it is often useful to find “prototypical” input

vectors puq,...
prediction

We can define basis functions (one
for each prototype) that measure
how close the the input vector x is

to the prototype

1
or(x) = exp{ —lx — |’}
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Additive models cont’d

e The basis functions can capture various (e.g., qualitative)
properties of the inputs.

For example: we can try to rate companies based on text
descriptions

x = text document (string of words)
bi(x) = 1 if word ¢ appears in the document
' | 0 otherwise

fx;w) = wo+ Z W; i (X)

iewords
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Additive models cont’d

e Graphical representation of additive models (cf.
networks):

T f(x; w)

1 W,
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Statistical view of linear regression
e A statistical regression model

function + noise

Observed output
y = Jx;w)te

where, e.g., e ~ N(0,0?).
e Whatever we cannot capture with our chosen family of
functions will be interpreted as noise
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Statistical view of linear regression

e Our function f(x;w) here is trying to capture the mean of
the observations y given a specific input x:

E{ly|x}=f(x;w)

The expectation is taken with respect to P that governs the
underlying (and typically unknown) relation between x and

Y.

5
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Statistical view of linear regression
e According to our statistical model
y=f(x;w)+¢, €~ N(0,0%

the outputs y given x are normally distributed with mean
f(x;w) and variance o:

Pl w,0) = —=— exp{ =5 5(s — f(xiw))*)

e As a result we can also measure the uncertainty in the
predictions (through variance 2), not just the mean

e |Loss function? Estimation?
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Maximum likelihood estimation

e Given observations D = {(x1,¥%1),- -, (Xn,yn)} we find the
parameters w that maximize the likelihood of the observed
outputs

L(D7W7 0_2) — H P(yi|xi7W7 02)
1=1

-2 -1 0 1 2

Why is this a bad fit according to the likelihood criterion?
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Maximum likelihood estimation

Likelihood of the observed outputs:

L(D;w,o0%) = H P(y;|x;, w,0?)
i=1

e It is often easier (and equivalent) to try to maximize the
log-likelihood:

Z(Da W, 02) — IOgL(Da W, 02) — Z lOgP(yZ‘X,“ W, 02)
=1

= En: <_L(yi — f(xi;w))? —log \/ﬁ)

202

= (gm2) Dot T~ Blog(2no)

1=1
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Maximum likelihood estimation cont’d

e The noise distribution and the loss-function are intricately
related

Loss(y, f(x;w)) = —log P(y|x,w,o?) + const.
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Maximum likelihood estimation cont’d

e The likelihood of the observed outputs

n

L(D;W70_2) — H P(yi|xi7W702)

1=1

provides a general measure of how the model fits the data.
On the basis of this measure, we can estimate the noise
variance o as well as the weights w.

Can we find a rationale for what the “optimal” noise variance
should be?
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Maximum likelihood estimation cont’d

o To estimate the parameters w and ¢° quantitatively, we
maximize the log-likelihood with respect to all the parameters

0
a—wl(D, W, 0'2) = 0
0 2
The resulting noise variance 62 is given by
o 1 :
5 = L3 (0~ flxi )
i=1

where w iIs the same ML estimate of w as before.

Interpretation: this is the mean squared prediction error (on
the training set) of the best linear predictor.
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Brief derivation

Consider the log-likelihood evaluated at w

I(D;Ww,0°%) = ( ! >z:(yZ — f(xs;W))* — glog(mez)

202 ) <
1=1
(need to justify first that we can simply substitute in the ML
solution w rather than perform joint maximization)

Now,

O 1o = () S (s — Flxi)? — " —
ol D) = (501) Sl o)) = =0

1=1

and we get the solution by multiplying both sides by 20 /n.
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Cross-validation and log-likelihood

Leave-one-out cross-validated log-likelihood:

CV = log Pyilxi, %", (6%) )

1=1

where w™* and (6%)" are maximum likelihood estimates
computed without the i*" training example (x;, ;).
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Some limitations
e [he simple statistical model
y=f(x;w)+¢, e~ N(0,0%

is not always appropriate or useful.

Example: noise may not be Gaussian

5 T T T 0.5

0.4r

0.3r

0.21

0.1r
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Limitations cont’d

e It may not even be possible (or at all useful) to model the
data with

y=f(x;w)+e e~N(0,0°%

no matter how flexible the function class f(:; w), w € W is.
Example:

15

5 L L L L L
-15 -1 -0.5 0 0.5 1 15
X

(note: thisis NOT a limitation conditional models P(y|x, w)
more generally)
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