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Topics

e Active learning and regression
— formulation
— selection criteria
— examples
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Active learning: rules of the game

e Supervised learning:
— (input,output) pairs are sampled from an unknown joint
distribution P(x,y)
e Active supervised learning:
— We select the input examples and the corresponding
outputs are sampled from an wnknown conditional
distribution P(y|x)
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Active learning

e Why active learning?
— we often need dramatically fewer training examples; the
time/cost of getting enough training examples may be
otherwise prohibitive

e Dangers of (this type of) active learning
— since we select the inputs, we may focus on inputs that
are unimportant, rare, or even invalid
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Active learning

e We need to decide:
1. the function class (the result will be highly dependent on
what we wish to learn)
2. the selection criterion, i.e., how we decide which inputs are
worth querying
3. how to apply the selection criterion (sequential or batch)

e Function class: we'll focus on linear/polynomial regression

y=wo+wiz+e €~ N0, 0%
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Active linear regression

e We perform the selection of inputs to uncover the (assumed)
“true” underlying linear relation:

_ _ _ | _ _ i}
Y1 X1 [wSI €1
_yn_ ] 1 xn_ 1 _en_

y = Xw +e€

where ¢; ~ N(0, 02).

e We need to first understand how our parameter estimates
relate to w™* as a function of inputs
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Properties of regression models

e [he outputs corresponding to the inputs arranged in X are
assumed to be generated according to:

y = Xw*+4e€ e~N(0,1-0°)

e The resulting parameter estimates, w = (X! X) X'y,
based on the same inputs X and sampled outputs y are
normally distributed:

w~N(wo?(XTX)™)
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Active learning: selection criterion

e Two main types of selection criteria
1. select inputs so as to minimize some measure of uncertainty
In the parameters

2. select inputs to minimize the uncertainty in the predicted
outputs

e Two main ways of applying such criteria
1. batch — all the inputs are chosen prior to seeing any
responses
2. sequential — the next query input is chosen with the full
knowledge of all the responses so far
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Batch selection, parameter criterion

We have to select the input examples prior to seeing any
outputs

e We wish to find n inputs x1,...,x, (which determine the
matrix X) so as to minimize a measure of uncertainty in the
resulting parameters w

w~ N (w* o?(X'X)™)

e For example, we can find the inputs that minimize the
determinant of the covariance matrix

det [ (X'X)~!]
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Determinant as a measure of “volume”

e Any covariance matrix has an eigen-decomposition:

o1

C=R L R’

2
Om

where the orthonormal rotation matrix R specifies the
principal axes of variation and each eigenvalue o7 gives
the variance along one of the principal directions

e The “volume” of a Gaussian
distribution is a function of only
0?,i=1,...,m. Specifically i
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Determinant criterion: example

e 1-d problem, 2nd order polynomial regression within = €
[_171]

f(z;w) = wo + wiz + wez?

For n = 4, what points would we select?
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Determinant criterion: example

e 1-d problem, 2nd order polynomial regression within = €
[_171]

f(z;w) = wo + wiz + wez?

For n = 4, what points would we select?
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r1=—1,29=0,23 =0,24 = 1
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Sequential selection, uncertainty in predictions

The next input is chosen on the basis of all the information
available so far
e [he prediction at a new point x is
T

. . . 1 .

y(xr) = Wy + wix = [x] \' 4
The variance in this prediction (due to the noise in the
outputs observed so far) is

Var {ij(z)} = [ : ]TC’OU(W) [ : ]

Tommi Jaakkola, MIT Al Lab 13



Sequential selection cont’d

Var{g(z)} = o° llr(XTx)l[l]

X

— the noise variance o only affects the overall scale (set to
1 from hereafter)

— the variance is a function of previously chosen inputs, not
outputs!

e Assuming the input points are contained within, e.g., an
interval X, we can select the new point to reduce the
variance of the most uncertain prediction:

3" = argmax Var{y(x)}
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Sequential selection: example

e 1-d problem, 2nd order polynomial regression within = €

[_17 1]
J(z) = o + 1T + Wor”
A priori selected inputs r1 = —1,20 = 0,23 = 1.
— - T — -
1 1
Var{gy(x)} = X (XIX)"H | =z
z? 7
1 T, x? ]
where X = 1 xy x3
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Sequential selection: properties

e In the linear/additive regression context the variance cannot
Increase anywhere as new points are added

C = (X*X)™! covariance of W
A = (X'X) inverse covariance
- 4T - - ~ - T -
1 1 1 1
Var{g(x)} = | x Clax | =|=x A7 |z
z? z? 72 7?

The variance never increases for any point x if the eigenvalues
of the inverse covariance matrix A increase (or stay the same)
as we add new points
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Brief derivation

New query point x/,

X X
- = r - T
1 1
— XX+ | 2 x’
le/2 513/2
— ) —_ __ ) —_ T )
1 1
= A+ | 2 x’
33/2 513/2

In other words, we add to A a matrix whose eigenvalues are
all non-negative = eigenvalues of A are non-decreasing
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Active learning more generally

e To perform active learning we have to evaluate “the value
of new information”, i.e., how much we expect to gain from
querying another response

e Such calculations can be done in the context of almost any

learning task

we will revisit the issue later on in the course ...
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