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Topics

• Active learning and regression

– formulation

– selection criteria

– examples
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Active learning: rules of the game

• Supervised learning:

– (input,output) pairs are sampled from an unknown joint

distribution P (x, y)
• Active supervised learning:

– We select the input examples and the corresponding

outputs are sampled from an unknown conditional

distribution P (y|x)
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Active learning

• Why active learning?

– we often need dramatically fewer training examples; the

time/cost of getting enough training examples may be

otherwise prohibitive

• Dangers of (this type of) active learning

– since we select the inputs, we may focus on inputs that

are unimportant, rare, or even invalid
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Active learning

• We need to decide:

1. the function class (the result will be highly dependent on

what we wish to learn)

2. the selection criterion, i.e., how we decide which inputs are

worth querying

3. how to apply the selection criterion (sequential or batch)

• Function class: we’ll focus on linear/polynomial regression

y = w0 + w1x+ ε, ε ∼ N(0, σ2)
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Active linear regression

• We perform the selection of inputs to uncover the (assumed)

“true” underlying linear relation: y1

· · ·
yn

 =

 1 x1

· · · · · ·
1 xn

[ w∗0
w∗1

]
+

 ε1
· · ·
εn


y = Xw∗ + ε

where εi ∼ N(0, σ2).

• We need to first understand how our parameter estimates

relate to w∗ as a function of inputs
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Properties of regression models

• The outputs corresponding to the inputs arranged in X are

assumed to be generated according to:

y = Xw∗ + ε, ε ∼ N(0, I · σ2 )

• The resulting parameter estimates, ŵ = (XTX)−1XTy,

based on the same inputs X and sampled outputs y are

normally distributed:

ŵ ∼ N
(
w∗, σ2(XTX)−1

)
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Active learning: selection criterion

• Two main types of selection criteria

1. select inputs so as to minimize some measure of uncertainty

in the parameters

2. select inputs to minimize the uncertainty in the predicted

outputs

• Two main ways of applying such criteria

1. batch – all the inputs are chosen prior to seeing any

responses

2. sequential – the next query input is chosen with the full

knowledge of all the responses so far
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Batch selection, parameter criterion

We have to select the input examples prior to seeing any

outputs

• We wish to find n inputs x1, . . . , xn (which determine the

matrix X) so as to minimize a measure of uncertainty in the

resulting parameters ŵ

ŵ ∼ N
(
w∗, σ2(XTX)−1

)
• For example, we can find the inputs that minimize the

determinant of the covariance matrix

det
[

(XTX)−1
]
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Determinant as a measure of “volume”

• Any covariance matrix has an eigen-decomposition:

C = R

 σ2
1

. . .

σ2
m

RT

where the orthonormal rotation matrix R specifies the

principal axes of variation and each eigenvalue σ2
i gives

the variance along one of the principal directions

• The “volume” of a Gaussian

distribution is a function of only

σ2
i , i = 1, . . . ,m. Specifically

“volume” ∝
m∏
i=1

σi =
√

detC
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Determinant criterion: example

• 1-d problem, 2nd order polynomial regression within x ∈
[−1, 1]

f(x; w) = w0 + w1x+ w2x
2

For n = 4, what points would we select?
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Determinant criterion: example

• 1-d problem, 2nd order polynomial regression within x ∈
[−1, 1]

f(x; w) = w0 + w1x+ w2x
2

For n = 4, what points would we select?

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1 = −1, x2 = 0, x3 = 0, x4 = 1
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Sequential selection, uncertainty in predictions

The next input is chosen on the basis of all the information

available so far

• The prediction at a new point x is

ŷ(x) = ŵ0 + ŵ1x =
[

1
x

]T
ŵ

The variance in this prediction (due to the noise in the

outputs observed so far) is

V ar { ŷ(x) } =
[

1
x

]T
Cov(ŵ)

[
1
x

]
= σ2

[
1
x

]T
(XTX)−1

[
1
x

]
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Sequential selection cont’d

V ar { ŷ(x) } = σ2

[
1
x

]T
(XTX)−1

[
1
x

]
– the noise variance σ2 only affects the overall scale (set to

1 from hereafter)

– the variance is a function of previously chosen inputs, not

outputs!

• Assuming the input points are contained within, e.g., an

interval X , we can select the new point to reduce the

variance of the most uncertain prediction:

xnew = argmax
x∈X

{
V ar { ŷ(x) }

}
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Sequential selection: example

• 1-d problem, 2nd order polynomial regression within x ∈
[−1, 1]

ŷ(x) = ŵ0 + ŵ1x+ ŵ2x
2

A priori selected inputs x1 = −1, x2 = 0, x3 = 1.

V ar { ŷ(x) } =

 1
x

x2


T

(XTX)−1

 1
x

x2


where X =

 1 x1 x2
1

1 x2 x2
2

. . . . . . . . .
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Example cont’d
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Sequential selection: properties

• In the linear/additive regression context the variance cannot

increase anywhere as new points are added

C = (XTX)−1 covariance of ŵ

A = (XTX) inverse covariance

V ar { ŷ(x) } =

 1
x

x2


T

C

 1
x

x2

 =

 1
x

x2


T

A−1

 1
x

x2


The variance never increases for any point x if the eigenvalues

of the inverse covariance matrix A increase (or stay the same)

as we add new points
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Brief derivation

New query point x′,

A′ =
[

1 x′ x′2

X

]T [
1 x′ x′2

X

]

= XTX +

 1
x′

x′2


 1
x′

x′2


T

= A +

 1
x′

x′2


 1
x′

x′2


T

In other words, we add to A a matrix whose eigenvalues are

all non-negative ⇒ eigenvalues of A are non-decreasing

Tommi Jaakkola, MIT AI Lab 18



Active learning more generally

• To perform active learning we have to evaluate “the value

of new information”, i.e., how much we expect to gain from

querying another response

• Such calculations can be done in the context of almost any

learning task

we will revisit the issue later on in the course ...
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