Machine learning: lecture 6

Tommi S. Jaakkola MIT AI Lab tommi@ai.mit.edu

Topics

- Generalized linear models (cont'd)
 - logistic regression
 - gradient ascent, learning rate, convergence, examples
 - additive models, neural networks, back-propagation
- Regularization
 - basic idea
 - effective number of parameters

Review: logistic regression

ullet In a logistic regression model the conditional probability of the label y given the input example ${f x}$ is expressed as

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_1 x_1 + \dots + w_d x_d)$$

where the coefficients w are the adjustable parameters.

The "squashing function"

$$g(z) = (1 + \exp(-z))^{-1}$$

known as the logistic function turns linear predictions into probabilities

Example problem

- The problem: classification of radar returns from the ionosphere (data is available from the UCI ML repository)
 - binary class label
 - 34 input "features" (2 values per radar pulse) defining the input vector $\mathbf{x} = [x_1, \dots, x_{34}]^T$.
 - 200 training and 150 testing examples
- We would like to estimate a simple logistic regression model for this classification task

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_1 x_1 + \dots + w_d x_d)$$

where d = 34.

Fitting logistic regression models

 As in the case of linear regression models we can fit the logistic models using the maximum log-likelihood criterion

$$l(D; \mathbf{w}) = \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i, \mathbf{w})$$

where

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_1 x_1 + \dots + w_d x_d)$$

• The log-likelihood function $l(D; \mathbf{w})$ is a *concave* function of the parameters \mathbf{w} ; a number of optimization techniques are available for finding the maximizing parameters

Gradient ascent

 We can maximize the log-likelihood by iteratively adjusting the parameters in small increments

In each iteration we adjust w slightly in the direction that increases the log-likelihood (towards the gradient):

$$\mathbf{w} \leftarrow \mathbf{w} + \epsilon \frac{\partial}{\partial \mathbf{w}} \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i, \mathbf{w})$$

$$= \cdots$$

$$= \mathbf{w} + \epsilon \sum_{i=1}^{n} \underbrace{\left(y_i - P(y_i = 1 | \mathbf{x}_i, \mathbf{w})\right)}_{\text{prediction error}} \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix}$$

where ϵ is the *learning rate*.

Gradient ascent cont'd

 To understand the procedure graphically we can focus on a single example

$$\mathbf{w} \leftarrow \mathbf{w} + \epsilon \underbrace{\left(y_i - P(y_i = 1 | \mathbf{x}_i, \mathbf{w})\right)}_{\text{prediction error}} \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix}$$

Setting the learning rate: Armijo rule

The learning rate in

$$\mathbf{w} \leftarrow \mathbf{w} + \epsilon \frac{\partial}{\partial \mathbf{w}} l(D; \mathbf{w})$$

"should" satisfy

$$l\left(D; \mathbf{w} + \epsilon \frac{\partial}{\partial \mathbf{w}} l(D; \mathbf{w})\right) - l(D; \mathbf{w}) \ge \epsilon \cdot \frac{1}{2} \|\frac{\partial}{\partial \mathbf{w}} l(D; \mathbf{w})\|^2$$

The Armijo rule suggests finding the smallest integer m such that $\epsilon = \epsilon_0 q^m, \ q < 1$ is a valid choice in this sense.

 Armijo rule is guaranteed to converge to a (local) maximum under certain technical assumptions

Example cont'd

 We get a monotonically increasing log-likelihood of the training labels as a function of the gradient ascent iterations

• The resulting error rate on the (independent) test set is %9.3

Gradient ascent: convergence

 The gradient ascent learning method converges when there is no incentive to move the parameters in any particular direction:

$$\sum_{i=1}^{n} \underbrace{\left(y_i - P(y_i = 1 | \mathbf{x}_i, \hat{\mathbf{w}})\right)}_{\text{prediction error}} \begin{bmatrix} 1 \\ \mathbf{x}_i \end{bmatrix} = 0$$

 This condition means again that the prediction error is decorrelated with the components of the input vector

Additive models and classification

 Similarly to linear regression models, we can extend the logistic regression models to additive (logistic) models

$$P(y=1|\mathbf{x},\mathbf{w}) = g(w_0 + w_1\phi_1(\mathbf{x}) + \dots w_m\phi_m(\mathbf{x}))$$

• We are again free to choose the basis functions $\phi_i(\mathbf{x})$

Two layer neural network model

 In a neural network model, the basis functions themselves are adjustable (e.g., squashed linear regression models) representing the probability that a "feature" is present in the input

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + w_1 \phi_1(\mathbf{x}) + \dots w_m \phi_m(\mathbf{x}))$$

$$\phi_m(x) = g(w_{m0} + w_{m1}x_1 + w_{m2}x_2)$$

Computing the gradient: back-propagation

Let z, z_i , i = 1, ..., m be the total "input" to each "node" computed in response to a training example \mathbf{x}

$$z = w_0 + w_1 g(z_1) + \ldots + w_m g(z_m)$$

 $z_i = w_{i0} + w_{i1} x_1 + w_{i2} x_2, i = 1, \ldots, m$

Back-propagation cont'd

We can propagate the derivatives with respect to the inputs

Back-propagation cont'd

We can propagate the derivatives with respect to the inputs

• The derivatives with respect to the weights w_{ij} are obtained from δ 's

$$\frac{\partial}{\partial w_{ij}} \log P(y|\mathbf{x}, \mathbf{w}) = \frac{\partial z_i}{\partial w_{ij}} \times \frac{\partial}{\partial z_i} \log P(y|\mathbf{x}, \mathbf{w}) = x_j \times \delta_i$$

Topics

- Regularization
 - basic idea
 - effective number of parameters

The key idea ... is to limit "choices"

Questions to answer:

- 1. What are the "choices"?
- 2. How do we limit the choices?
- 3. Why do we need to limit the choices? (next lecture)

• The set of (0/1) coins parameterized by the probability p of getting "1"

How many coins are there?

• The set of (0/1) coins parameterized by the probability p of getting "1"

How many coins are there?

Case 1: ∞

• The set of (0/1) coins parameterized by the probability p of getting "1"

How many coins are there?

Case 1: ∞

Case 2: 9 coins (p_1, \ldots, p_9) so that predictions of any other coin (indexed by p) is no more than $\epsilon = 0.1$ away

for any p, $|p-p_j| \le \epsilon$ for at least one j

• The set of (0/1) coins parameterized by the probability p of getting "1"

How many coins are there?

Case 1: ∞

Case 2: 9 coins (p_1, \ldots, p_9) so that predictions of any other coin (indexed by p) is no more than $\epsilon = 0.1$ away

for any p, $|p-p_j| \le \epsilon$ for at least one j

Case 3: only 1 coin if $\epsilon = 0.5$

Logistic regression example

Simple logistic regression model

$$P(y=1|x,\mathbf{w}) = g(w_0 + w_1 x)$$

parameterized by $\mathbf{w} = (w_0, w_1)$. We assume that $x \in [-1, 1]$, i.e., that the inputs remain bounded.

• We can now divide the parameter space into regions with centers $\mathbf{w}_1, \mathbf{w}_2, \ldots$ such that the predictions of any \mathbf{w} (for any $x \in [-1,1]$) are close to those of one of the centers:

$$|\log P(y=1|x,\mathbf{w}) - \log P(y=1|x,\mathbf{w}_j)| \le \epsilon$$

Limiting choices: regularization

• By constraining $\|\mathbf{w}\| \leq C$ for some regularization parameter C, we have fewer effective parameter choices in the logistic regression model

$$P(y=1|x,\mathbf{w}) = g(w_0 + w_1 x)$$

Regularization cont'd

• We can also regularize by imposing a penalty in the estimation criterion that encourages $\|\mathbf{w}\|$ to remain small.

Maximum penalized likelihood

$$l(D; \mathbf{w}, \lambda) = \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i, \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

where larger values of λ impose stronger regularization.