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Topics

e Generalized linear models (cont'd)
— logistic regression
— gradient ascent, learning rate, convergence, examples
— additive models, neural networks, back-propagation

e Regularization
— basic idea
— effective number of parameters
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Review: logistic regression

e In a logistic regression model the conditional probability of
the label y given the input example x is expressed as

Ply=1x,w) =g (wo + wix1 + ... + wyry)

where the coefficients w are the adjustable parameters.

1

The “squashing function”

0.8

g(z) = (1 +exp(—2)) "

known as the logistic function o«
turns linear predictions into o,
probabilities
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Example problem

e The problem: classification of radar returns from the
ionosphere (data is available from the UCI ML repository)
— binary class label
— 34 input “features” (2 values per radar pulse) defining the

input vector x = [z1,...,34]".

— 200 training and 150 testing examples

e \We would like to estimate a simple logistic regression model
for this classification task

Ply=1|x,w) =g (wo + wixr1 + ... + wyxy)
where d = 34.
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Fitting logistic regression models

e As in the case of linear regression models we can fit the
logistic models using the maximum log-likelihood criterion

[(D;w) =) log P(yilx;, w)
i=1
where
Ply=1x,w) =g (wo + wixr1 + ... + wyxy)

e The log-likelihood function I(D;w) is a concave function of
the parameters w; a number of optimization techniques are
available for finding the maximizing parameters
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Gradient ascent

e We can maximize the log-likelihood by iteratively adjusting
the parameters in small increments

In each iteration we adjust w slightly in the direction that
increases the log-likelihood (towards the gradient):

a n
W W+€a—wi_zllogp(yi\xiaw)

;7\.7.+€ i (yz — Py = 1Xz‘>W)> [ }1(@ ]

1=1

\ 7

prediction error

where € is the learning rate.
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Gradient ascent cont’d

e To understand the procedure graphically we can focus on a
single example

1
W wee (u-P= 1w ) [ L]

\ 7

prediction error

uwmx/\

(0,0,0,...,0)
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Setting the learning rate: Armijo rule

The learning rate in
0
W<—W—|—€a—l(D;W) . .
w e dicw |(D;w)
“should” satisfy
1, 0
(D w ot g t(Diw) ) =~ UDiw) = -Gl 1(Dsw)

The Armijo rule suggests finding the smallest integer m such
that € = €9q", q < 1 is a valid choice in this sense.

e Armijo rule is guaranteed to converge to a (local) maximum
under certain technical assumptions
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Example cont’d

e We get a monotonically increasing log-likelihood of the
training labels as a function of the gradient ascent iterations
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e The resulting error rate on the (independent) test set is %9.3
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Gradient ascent: convergence

e The gradient ascent learning method converges when there
IS no incentive to move the parameters in any particular
direction:

Zn: yi — Py = 1|x;, W) [1_]:0

1=1

\ J/

prediction error

1 \
0.8F ¢
e [his condition means again o (.
. g 04r "
that the prediction error :.. .
. . % ] - o,"t'wﬂ S o
is decorrelated with the & ° A "
components of the input o a
-0.6
vector 08
= ~05 0 05 1

input component
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Additive models and classification

e Similarly to linear regression models, we can extend the
logistic regression models to additive (logistic) models

Py =1lx,w) = g (wo + w191(X) + . . . Wi Pm(x) )

e We are again free to choose the basis functions ¢;(x)

Tommi Jaakkola, MIT Al Lab 11



Two layer neural network model

e In a neural network model, the basis functions themselves
are adjustable (e.g., squashed linear regression models)
representing the probability that a “feature” is present in

the input
Ply=1x,w) = g(wo+wig1(x)+ ... wndm(x))

qu(x) — 9( Wm0 T Wm1T1 + Wm2T2 )
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Computing the gradient: back-propagation

Let 2z, z;,2 = 1,...,m be the total “input” to each “node”
computed in response to a training example x

z = wo+wig(z1) + ...+ wng(zm)

Zi = Wip+ witT1 + wipre, t=1,...,m

T Py=1|x,w) = 9(2)
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Back-propagation cont’d

e \We can propagate the derivatives with respect to the inputs

0 =1|x,w) = g(z
5 = glogP(y]X,w) P PU=Low) =9(2)
9,
5 = —log Pylx, W) " /
0z 9(z,)
99(zi) 0z 0 O -

= 5. X 9902 X glogP(y\X,w) W

= g/(Zi) X WwW; X 0 Xy Xy
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Back-propagation cont’d

e \We can propagate the derivatives with respect to the inputs

9,

5 = alogP(y]X,w) P Py=tew) =9(2)
0
0i = log P(y|x, w) !
gzi( ) 3 5 Q o(z)
— —log P
05 < Dgz) 0z BTN NN
= g’(zi)xwix5 Xy X,

e The derivatives with respect to the weights w;; are obtained
from o's

0 822 0
log P —
P, 8 (ylx, w) =~ o

log P(y|x,w) = x; X ¢,
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Topics

e Regularization
— basic idea
— effective number of parameters
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The key idea ... is to limit “choices”

Questions to answer:

1. What are the “choices”?

2. How do we limit the choices?

3. Why do we need to limit the choices? (next lecture)
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Example

e The set of (0/1) coins parameterized by the probability p of
getting “1"”

How many coins are there?
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Example

e The set of (0/1) coins parameterized by the probability p of
getting “1"”

How many coins are there?

Case 1: o©

Tommi Jaakkola, MIT Al Lab 19



Example

e The set of (0/1) coins parameterized by the probability p of
getting “1"”

How many coins are there?

Case 1: o©
Case 2: 9 coins (p1,..-,p9) so that predictions of any
other coin (indexed by p) is no more than € = 0.1 away

for any p, |p — p;| < e for at least one j
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Example

e The set of (0/1) coins parameterized by the probability p of
getting “1"”

How many coins are there?

Case 1: o©
Case 2: 9 coins (p1,..-,p9) so that predictions of any
other coin (indexed by p) is no more than € = 0.1 away

for any p, |p — p;| < e for at least one j

Case 3: only 1 coin if e = 0.5
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Logistic regression example
e Simple logistic regression model
P(y = 1lz,w) = g(wo + wiz)

parameterized by w = (wg,w;). We assume that x €
|—1, 1], i.e., that the inputs remain bounded.

e We <can now divide the
parameter space Into regions
with centers wi,wsy, ... such
that the predictions of any w
(for any x € [—1,1]) are close
to those of one of the centers:

[log P(y = 1|z, w) —log P(y = 1|z, w,)| < e
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Limiting choices: regularization

e By constraining ||w|| < C for some regularization parameter
C', we have fewer effective parameter choices in the logistic
regression model

P(y = 1|z, w) = g(wo + w1)
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Regularization cont’d

e We can also regularize by imposing a penalty in the
estimation criterion that encourages ||w|| to remain small.

Maximum penalized likelihood

- A
[(D;w,\) = ZIOgP(yi\XuW) - §HWH2
i—1

where larger values of A impose stronger regularization.
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