Machine learning: lecture 7

Tommi S. Jaakkola MIT AI Lab tommi@ai.mit.edu

Topics

- Regularization cont'd
 - regularized logistic regression
 - empirical vs. expected loss
- Support vector machine (part 1)
 - discrimination, "optimal" hyperplane
 - optimization via Lagrange multipliers

Review: "choices" in logistic regression

Simple logistic regression model

$$P(y=1|x,\mathbf{w}) = g(w_0 + w_1 x)$$

parameterized by $\mathbf{w} = (w_0, w_1)$. We assume that $x \in [-1, 1]$, i.e., that the inputs remain bounded.

• We can now divide the parameter space into regions with centers $\mathbf{w}_1, \mathbf{w}_2, \ldots$ such that the predictions of any \mathbf{w} (for any $x \in [-1,1]$) are close to those of one of the centers:

$$|\log P(y=1|x,\mathbf{w}) - \log P(y=1|x,\mathbf{w}_j)| \le \epsilon$$

Review: regularized logistic regression

 We can regularize by imposing a penalty in the estimation criterion that encourages ||w|| to remain small.

Maximum penalized likelihood

$$l(D; \mathbf{w}, \lambda) = \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i, \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

where larger values of λ impose stronger regularization.

• More generally, we can assign penalties based on prior distributions over the parameters, i.e., add $\log P(\mathbf{w})$ in the log-likelihood criterion.

Effect of available "choices"

ullet We'd like the empirical loss of our parameter estimate $\hat{\mathbf{w}}$ to be close to its expected loss

Example: m effective parameter choices

$$L_n(\mathbf{w}_k) = \frac{1}{n} \sum_{i=1}^n \text{Loss}(y_i, f(\mathbf{x}_i, \mathbf{w}_k)), \quad k = 1, \dots, m$$

$$L_n(\hat{\mathbf{w}}) = \min_i \{ L_n(\mathbf{w}_i) \}$$

Empirical vs expected loss

• How is $\min_i \{ L_n(\mathbf{w}_i) \}$ distributed in the simple case where each

$$L_n(\mathbf{w}_k) = \frac{1}{n} \sum_{i=1}^n \text{Loss}(y_i, f(\mathbf{x}_i, \mathbf{w}_k)),$$

is a zero mean Gaussian?

Topics

- Support vector machine
 - discrimination, "optimal" hyperplane
 - optimization via Lagrange multipliers
 - kernel function

Discriminative (non-probabilistic) classification

• Consider a binary classification task with $y=\pm 1$ labels (not 0/1 as before). When the training examples are *linearly* separable we can set the parameters of a linear classifier so that all the training examples are classified correctly:

$$y_i[w_0 + \mathbf{w}^T \mathbf{x}] > 0, \ i = 1, \dots, n$$

The label we predict for each example is given by the sign of the linear function $w_0 + \mathbf{w}^T \mathbf{x}$.

Classification and margin

 We can try to find a unique solution by requiring that the training examples are classified correctly with a non-zero "margin"

$$y_{i} \left[w_{0} + \mathbf{w}^{T} \mathbf{x}_{i} \right] - 1 \geq 0, \ i = 1, \dots, n$$

The margin should be defined in terms of the distance from the boundary to the examples rather than based on the value of the linear function.

Redefining margin

• One dimensional example: $f(x; w_1, w_0) = w_0 + w_1 x$.

Relevant constraints:

$$1[w_0 + w_1 x^+] - 1 \ge 0$$
$$-1[w_0 + w_1 x^-] - 1 \ge 0$$

Redefining margin

• One dimensional example: $f(x; w_1, w_0) = w_0 + w_1 x$. Relevant constraints:

$$1[w_0 + w_1 x^+] - 1 \ge 0$$
$$-1[w_0 + w_1 x^-] - 1 \ge 0$$

By adding the two inequalities we get

$$w_1(x^+ - x^-) - 2 \ge 0$$
 $\underbrace{|x^- - x^+|/2}_{\text{max margin}} \ge \frac{1}{|w_1|}$

ullet We get maximum margin separation by minimizing $|w_1|$

Support vector machine

We minimize a regularization penalty

$$\|\mathbf{w}\|^2/2 = \mathbf{w}^T \mathbf{w}/2 = \sum_{j=1}^d w_i^2/2$$

subject to the classification constraints

$$y_i [w_0 + \mathbf{w}^T \mathbf{x}_i] - 1 \ge 0, \quad i = 1, \dots, n$$

- The attained margin is now given by $1/\|\mathbf{w}\|$
- Only a few of the classification constraints are relevant
 ⇒ support vectors

Support vector machine cont'd

- We find the optimal setting of $\{w_0, \mathbf{w}\}$ by introducing Lagrange multipliers $\alpha_i \geq 0$ for the inequality constraints
- We minimize

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 - \sum_{i=1}^n \alpha_i \left(y_i [w_0 + \mathbf{w}^T \mathbf{x}_i] - 1 \right)$$

with respect to \mathbf{w}, w_0 . $\{\alpha_i\}$ ensure that the classification constraints are indeed satisfied.

For fixed $\{\alpha_i\}$

$$\frac{\partial}{\partial \mathbf{w}} J(\mathbf{w}, w_0, \alpha) = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$

$$\frac{\partial}{\partial w_0} J(\mathbf{w}, w_0, \alpha) = -\sum_{i=1}^n \alpha_i y_i = 0$$

Solution

• Substituting the solution $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ back into the objective leaves us with the following (dual) optimization problem over the Lagrange multipliers:

We maximize

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j(\mathbf{x}_i^T \mathbf{x}_j)$$

subject to the constraints

$$\alpha_i \ge 0, \quad i = 1, \dots, n, \quad \sum_{i=1}^n \alpha_i y_i = 0$$

(For non-separable problems we have to limit $\alpha_i \leq C$)

• This is a quadratic programming problem

Support vector machines

• Once we have the Lagrange multipliers $\{\hat{\alpha}_i\}$, we can reconstruct the parameter vector $\hat{\mathbf{w}}$ as a weighted combination of the training examples:

$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i y_i \mathbf{x}_i$$

where the "weight" $\hat{\alpha}_i = 0$ for all but the support vectors (SV)

The decision boundary has an interpretable form

$$\hat{\mathbf{w}}^T \mathbf{x} + \hat{w}_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + \hat{w}_0 = f(\mathbf{x}; \hat{\alpha}, \hat{w}_0)$$

Interpretation of support vector machines

- To use support vector machines we have to specify only the inner products (or *kernel*) between the examples $(\mathbf{x}_i^T \mathbf{x})$
- The weights $\{\alpha_i\}$ associated with the training examples are solved by enforcing the classification constraints.
 - \Rightarrow sparse solution
- We make decisions by comparing each new example \mathbf{x} with **only** the support vectors $\{\mathbf{x}_i\}_{i\in SV}$:

$$\hat{y} = \operatorname{sign}\left(\sum_{i \in SV} \hat{\alpha}_i y_i \left(\mathbf{x}_i^T \mathbf{x}\right) + \hat{w}_0\right)$$