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Topics

e Regularization cont'd
— regularized logistic regression
— empirical vs. expected loss

e Support vector machine (part 1)
— discrimination, “optimal” hyperplane
— optimization via Lagrange multipliers
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Review: “choices” in logistic regression
e Simple logistic regression model
P(y = 1lz,w) = g(wo + wiz)

parameterized by w = (wg,w;). We assume that x €
|—1, 1], i.e., that the inputs remain bounded.

e We <can now divide the
parameter space Into regions
with centers wi,wsy, ... such
that the predictions of any w
(for any z € [—1,1]) are close
to those of one of the centers:

[log P(y = 1|z, w) —log P(y = 1|z, w;)| < €
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Review: regularized logistic regression

e \We can regularize by imposing
a penalty in the estimation
criterion that encourages ||w||
to remain small.

Maximum penalized likelihood

- A
[(D;w,\) = Y log P(yi|xi, w) — =||w|?
(Dsw,X) = 3 log Pl w) = 5w
where larger values of A impose stronger regularization.

e More generally, we can assign penalties based on prior
distributions over the parameters, i.e., add log P(w) in the
log-likelihood criterion.
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Effect of available “choices”

e We'd like the empirical loss of our parameter estimate w to
be close to its expected loss

Example: m effective parameter choices

L(wy) = %ZLOSS(yi,f(Xi,Wk)), k=1, ..m
1=1
Lyp(w) = min{ L,(w;) }

1

Tommi Jaakkola, MIT Al Lab 5



Empirical vs expected loss

e How is min; { L,,(w;) } distributed in the simple case where
each

Lu(wi) = =3 Loss(i £(xi, i),
1=1

Is a zero mean Gaussian?
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Topics

e Support vector machine
— discrimination, “optimal” hyperplane
— optimization via Lagrange multipliers
— kernel function

Tommi Jaakkola, MIT Al Lab



Discriminative (non-probabilistic) classification

e Consider a binary classification task with y = 41 labels (not
0/1 as before). When the training examples are linearly
separable we can set the parameters of a linear classifier so
that all the training examples are classified correctly:

yi [wo +wix] >0, i=1,...,n

The label we predict for each example is given by the sign of

the linear function wy + w'x.

6 \
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Classification and margin

e We can try to find a unique solution by requiring that the
training examples are classified correctly with a non-zero

“margin”
yilwo+w'x;]—1>0,i=1,...,n
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The margin should be defined in terms of the distance from
the boundary to the examples rather than based on the value
of the linear function.
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Redefining margin

e One dimensional example: f(x;wy,wq) = wo + wq

Relevant constraints:

1 [wo + wix™] —1

—1 |wog+wiz™] —1
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Redefining margin

e One dimensional example: f(x; w1, wy) = wo + w1

Relevant constraints:

1wy +wizt] —1 0

IV

—1{wg+wiz™]—1 > 0

. - N
f(x,wl,wO W, tw, X
1 ]

By adding the two inequalities _.*°

WO)

E:H or x » % c';>o oo
we get i
wi(zT —27) -2 > 0 :
1 15
’\x_ - ZC+|/% Z ’U]1| % 1 0 1 i 3 4 5

max margin

e We get maximum margin separation by minimizing |w-|
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Support vector machine

e \WWe minimize a regularization penalty
d
[wl?/2=ww/2="> wi/2
j=1

subject to the classification constraints

yilwo+wix;] —1>0, i=1,...,n

e The attained margin is now .
given by 1/|lw]| :

e Only a few of the classification i
constraints are relevant o

— support vectors
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Support vector machine cont’d

e We find the optimal setting of {wgy,w} by introducing
Lagrange multipliers c;; > 0 for the inequality constraints
e We minimize

J(w,wo,a) = [[w]?/2 - Z o7 (yz [wo +WTXz'] - 1)
i=1

with respect to w,wg. {«;} ensure that the classification

constraints are indeed satisfied.

For fixed {a;}

a%J(W7 Wy, ) = W — ; a;yiX; = 0
iJ(Ww a) = —Zn:oz- =0
a’UJO 9 0> T — Zy’L T
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Solution

e Substituting the solution w = 2?21 «;1y;X; back into the
objective leaves us with the following (dual) optimization
problem over the Lagrange multipliers:

We maximize

Z% — — Z oy (X5 %)

1,7=1

subject to the constraints

n
a, >0, 1=1,...,n, Zaiyi:O

(For non-separable problems we have to limit a; < C)

e This is a quadratic programming problem
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Support vector machines

e Once we have the Lagrange

multipliers  {&;}, we  can
reconstruct the parameter vector
w as a weighted combination of oo
the training examples: 0
n O
~ ~ O
W — E QY X5 °
i=1

where the “weight” &; = 0 for all
but the support vectors (SV)

e The decision boundary has an interpretable form

wix + gy = Z & s (X3 %) 4 o = f(x;
1eSV

Tommi Jaakkola, MIT Al Lab

A A

a,

0)

15



Interpretation of support vector machines

e To use support vector machines we have to specify only the
inner products (or kernel) between the examples (x} x)

e The weights {«;} associated with the training examples are
solved by enforcing the classification constraints.

= sparse solution

e \We make decisions by comparing each new example x with
only the support vectors {x;};csv:

y = sign Z Qi i (X X) + o
€SV
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