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Topics

• Support vector machine (part 2)

– optimization, interpretation

– kernel function, examples

• Text classification example

– model specification

– model estimation with regularization

– feature selection
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Support vector machine

• We minimize a regularization penalty

‖w‖2/2 = wTw/2 =
d∑

j=1

w2
i /2

subject to the classification constraints

yi [w0 + wTxi]− 1 ≥ 0, i = 1, . . . , n

• The attained margin is now

given by 1/‖w‖

• Only a few of the classification

constraints are relevant

⇒ support vectors
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Optimization

• We have to solve the following quadratic programming

problem to find the values for the Lagrange multipliers αi

associated with the classification constraints:

J(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj(xT
i xj)

where

αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αiyi = 0

(For non-separable problems we limit αi ≤ C)

• The resulting decision boundary has an interpretable form

ŵTx + ŵ0 =
∑

i∈SV

α̂i yi (xT
i x) + ŵ0
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Interpretation of support vector machines

• To use support vector machines we have to specify only the

inner products (or kernel) between the examples (xT
i x)

• The weights {αi} associated with the training examples are

solved by enforcing the classification constraints.

⇒ sparse solution

• We make decisions by comparing each new example x with

only the support vectors {xi}i∈SV :

ŷ = sign

( ∑
i∈SV

α̂i yi (xT
i x) + ŵ0

)
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Non-linear classifier

• So far our classifier can make only linear separations

• We can easily obtain a non-linear classifier by mapping our

examples x = [x1 x2] into longer feature vectors Φ(x)

Φ(x) = [x2
1 x2

2

√
2x1x2

√
2x1

√
2x2 1]

and applying the linear classifier to the new feature vectors

Φ(x) instead
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Non-linear classifier
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Feature mapping and kernels

• Let’s look at the previous example in a bit more detail

x → Φ(x) = [x2
1 x2

2

√
2x1x2

√
2x1

√
2x2 1]

• The SVM classifier deals only with inner products of examples

(or feature vectors). In this example,

Φ(x)TΦ(x′) = x2
1x

′2
1 + x2

2x
′2
2 + 2x1x2x

′
1x

′
2 + 2x1x

′
1 + 2x2x

′
2 + 1

= (1 + x1x
′
1 + x2x

′
2)

2

=
(
1 + (xTx′)

)2
But these inner products can be evaluated without ever

explicitly constructing the feature vectors Φ(x)!

• K(x,x′) =
(
1 + (xTx′)

)2
is a kernel function (inner product

in the feature space)
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Examples of kernel functions

• Linear kernel

K(x,x′) = (xTx′)

• Polynomial kernel

K(x,x′) =
(
1 + (xTx′)

)p
where p = 2, 3, . . .. To get the feature vectors we

concatenate all pth order polynomial terms of the components

of x (weighted appropriately)

• Radial basis kernel

K(x,x′) = exp
(
−1

2
‖x− x′‖2

)
In this case the feature space consists of functions and results

in a non-parametric classifier.
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SVM examples
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Dimensionality and complexity

• Example: even for small values of p the polynomial kernel

K(x,x′) =
(
1 + (xTx′)

)p
corresponds to long feature vectors Φ(x).

In two dimensions:

degree p # of features

2 6

3 10

4 15

5 21

In three dimensions

degree p # of features

2 10

3 20

4 35

5 56

(it gets much worse in higher dimensions)

• The dimensionality of the feature space does not tell the

whole story
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Cross-validation error
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• The leave-one-out cross-validation error does not depend on

the dimensionality of the feature space but only on the # of

support vectors!

Leave-one-out CV error ≤ # support vectors

# of training examples
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SVM examples

• Digit recognition example (16x16 grayscale pixel images)

Method error %

SVM (4th order polynomial) 1.1

LeNet 1 (neural network) 1.7 (hand tuned)

LeNet 4 (neural network) 1.1 (hand tuned)

Tangent distance (template matching) 0.7 (hand tuned)

• Document classification, etc.
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Topics

• Text classification example

– model specification

– model estimation with regularization

– feature selection
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Example problem

• Text classification (information retrieval)

– a large number of documents x in a database

– only a few labeled documents {(x1, y1), . . . , (xn, yn)}

• We wish to build a classifier on the basis of the few labeled

training examples (documents).

– we assume for simplicity that the labels are binary (1/0)

• Several steps we need to take:

1. feature transformation

2. model/classifier specification

3. model/classifier estimation with regularization
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Feature transformation

• The presence/absence of specific words in a document carries

information about what the document is about

• We can construct m (about 10, 000) indicator features

(basis functions) {φk(x)} for whether a word appears in

the document

φk(x) = 1, if word k appears in document x; zero otherwise

Φ(x) = [φ1(x), . . . , φm(x)]T is the resulting feature vector
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Classifiers

• Discriminative (support vector machine)

– need to choose the kernel and evaluate inner products

between the original feature vectors

• Generative model

– need to define class conditional distributions
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Model specification: “Naive Bayes” model

• We can treat each word detector φi(x) as an independent

expert that provides some information about the classification

• We combine these “expert opinions” by modeling their

decisions given the labels:

P (Φ(x)|y, θ) =

[
m∏

k=1

P (φk(x)|y, θk)

]
where P (φk(x)|y, θk) is the conditional probability that the

kth word appears in a document labeled y. θk are the

parameters associated with this conditional probability.

• Classification via Bayes rule:

P (y|Φ(x), θ) =
P (Φ(x)|y, θ)P (y)∑

y′=0,1 P (Φ(x)|y′, θ)P (y′)
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Naive Bayes estimation

• We can write the conditional probabilities of a single feature

as

P (φk(x)|y, θk) = θ
φk(x)
k|y (1− θk|y)1−φk(x)

where θk|y is the probability that the word k appears in a

document labeled y and θk = {θk|1, θk|0}.
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Naive Bayes estimation cont’d

P (φk(x)|y, θk) = θ
φk(x)
k|y (1− θk|y)1−φk(x)

• Maximum likelihood estimation (here for a single feature)

Jn(θk) =
n∑

i=1

log P (φk(xi)|yi, θk)

=
n∑

i=1

[
φk(xi) log(θk|yi

) + (1− φk(xi)) log(1− θk|yi
)
]

=
∑

y=0,1

[
Nky log(θk|y) + (Ny −Nky) log(1− θk|y)

]
Nky = # of documents containing word k and labeled y

Ny = # of documents with label y
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Naive Bayes estimation cont’d

• We can solve for the parameters directly

Jn(θk) =
∑

y=0,1

[
Nky log(θk|y) + (Ny −Nky) log(1− θk|y)

]
∂

∂θk|y
Jn(θk) =

Nky

θk|y
− Ny −Nky

1− θk|y
= 0

⇒ θ̂k|y =
Nky

Ny
(empirical fraction)

• BUT: we have very few documents and some words are rare;

these estimates are unlikely to be good

• We need regularization...
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Prior over the parameters

• Suppose we are dealing with simple coin flips (0/1), where

parameter θ determines the probability of “1”.

• We can construct a prior over θ on the basis of

1. a default parameter choice p (in the absence of any data)

2. how much we believe in the default choice (parameter n′)

• Such a prior is known as the

beta distribution:

P (θ) ∝ θn′p (1− θ)(n
′−n′p)
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p = 0.5, n′ = 0, 1, 2, 3

(n′ and p are known as hyper-parameters)
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Regularized Naive Bayes estimation

• To include the prior distribution P (θk) as a regularizer we

maximize the penalized log-likelihood

Jn(θk) =
∑

y=0,1

[
Nky log(θk|y) + (Ny −Nky) log(1− θk|y)

]
+
∑

y=0,1

log P (θk|y)

=
∑

y=0,1

[
Nky log(θk|y) + (Ny −Nky) log(1− θk|y)

]
+
∑

y=0,1

[
n′p log(θk|y) + (n′ − n′p) log(1− θk|y)

]
• The resulting parameter estimates are

θ̂k|y =
Nky + n′p

Ny + n′
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Are we done ... is regularization enough?
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