Machine learning: lecture 8

Tommi S. Jaakkola MIT AI Lab *tommi@ai.mit.edu*

Topics

- Support vector machine (part 2)
 - optimization, interpretation
 - kernel function, examples
- Text classification example
 - model specification
 - model estimation with regularization
 - feature selection

Support vector machine

• We minimize a regularization penalty

$$\|\mathbf{w}\|^2/2 = \mathbf{w}^T \mathbf{w}/2 = \sum_{j=1}^d w_i^2/2$$

subject to the classification constraints

$$y_i [w_0 + \mathbf{w}^T \mathbf{x}_i] - 1 \ge 0, \quad i = 1, \dots, n$$

- \bullet The attained margin is now given by $1/\|\mathbf{w}\|$
- Only a few of the classification constraints are relevant
 ⇒ support vectors

Optimization

• We have to solve the following *quadratic programming* problem to find the values for the Lagrange multipliers α_i associated with the classification constraints:

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j(\mathbf{x}_i^T \mathbf{x}_j)$$

where

$$\alpha_i \ge 0, \quad i = 1, \dots, n, \quad \sum_{i=1}^n \alpha_i y_i = 0$$

(For non-separable problems we limit $\alpha_i \leq C$)

• The resulting decision boundary has an interpretable form

$$\hat{\mathbf{w}}^T \mathbf{x} + \hat{w}_0 = \sum_{i \in SV} \hat{\alpha}_i y_i \left(\mathbf{x}_i^T \mathbf{x} \right) + \hat{w}_0$$

Interpretation of support vector machines

- To use support vector machines we have to specify only the inner products (or *kernel*) between the examples $(\mathbf{x}_i^T \mathbf{x})$
- The weights {α_i} associated with the training examples are solved by enforcing the classification constraints.

 \Rightarrow sparse solution

 We make decisions by comparing each new example x with only the support vectors {x_i}_{i∈SV}:

$$\hat{y} = \operatorname{sign}\left(\sum_{i \in SV} \hat{\alpha}_i y_i \left(\mathbf{x}_i^T \mathbf{x}\right) + \hat{w}_0\right)$$

Non-linear classifier

- So far our classifier can make only linear separations
- We can easily obtain a non-linear classifier by mapping our examples $\mathbf{x} = [x_1 \ x_2]$ into longer feature vectors $\Phi(\mathbf{x})$

$$\Phi(\mathbf{x}) = \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 & \sqrt{2}x_1 & \sqrt{2}x_2 & 1 \end{bmatrix}$$

and applying the linear classifier to the new feature vectors $\Phi(\mathbf{x})$ instead

Non-linear classifier

Linear separator in the feature space

Non-linear separator in the original space

Feature mapping and kernels

- Let's look at the previous example in a bit more detail $\mathbf{x} \to \Phi(\mathbf{x}) = [x_1^2 \ x_2^2 \ \sqrt{2}x_1x_2 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ 1]$
- The SVM classifier deals only with inner products of examples (or feature vectors). In this example,
 - $\Phi(\mathbf{x})^T \Phi(\mathbf{x}') = x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_2 x_1' x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$ = $(1 + x_1 x_1' + x_2 x_2')^2$ = $(1 + (\mathbf{x}^T \mathbf{x}'))^2$

But these inner products can be evaluated without ever explicitly constructing the feature vectors $\Phi(\mathbf{x})$!

• $K(\mathbf{x}, \mathbf{x}') = (1 + (\mathbf{x}^T \mathbf{x}'))^2$ is a *kernel function* (inner product in the feature space)

Examples of kernel functions

• Linear kernel

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}')$$

• Polynomial kernel

$$K(\mathbf{x}, \mathbf{x}') = (1 + (\mathbf{x}^T \mathbf{x}'))^p$$

where $p = 2, 3, \ldots$ To get the feature vectors we concatenate all p^{th} order polynomial terms of the components of x (weighted appropriately)

• Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$$

In this case the feature space consists of functions and results in a *non-parametric* classifier.

SVM examples

Dimensionality and complexity

• Example: even for small values of p the polynomial kernel $K({\bf x},{\bf x}')=\left(1+({\bf x}^T{\bf x}')\right)^p$

corresponds to long feature vectors $\Phi(\mathbf{x}).$

In two dimensions:		In three dimensions	
degree p	# of features	degree p	# of features
2	6	2	10
3	10	3	20
4	15	4	35
5	21	5	56

(it gets much worse in higher dimensions)

• The dimensionality of the feature space does not tell the whole story

Cross-validation error

 The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the # of support vectors!

Leave-one-out CV error
$$\leq \frac{\# \text{ support vectors}}{\# \text{ of training examples}}$$

SVM examples

Digit recognition example (16x16 grayscale pixel images)
Method error %
SVM (4th order polynomial) 1.1
LeNet 1 (neural network) 1.7 (hand tuned)
LeNet 4 (neural network) 1.1 (hand tuned)
Tangent distance (template matching) 0.7 (hand tuned)

• Document classification, etc.

Topics

- Text classification example
 - model specification
 - model estimation with regularization
 - feature selection

Example problem

- Text classification (information retrieval)
 - a large number of documents ${\bf x}$ in a database
 - only a few labeled documents $\{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)\}$
- We wish to build a classifier on the basis of the few labeled training examples (documents).
 - we assume for simplicity that the labels are binary (1/0)
- Several steps we need to take:
 - 1. feature transformation
 - 2. model/classifier specification
 - 3. model/classifier estimation with regularization

Feature transformation

- The presence/absence of specific words in a document carries information about what the document is about
- We can construct m (about 10,000) indicator features (basis functions) $\{\phi_k(\mathbf{x})\}$ for whether a word appears in the document

 $\phi_k(\mathbf{x}) = 1$, if word k appears in document \mathbf{x} ; zero otherwise

 $\Phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x})]^T$ is the resulting *feature vector*

Classifiers

- Discriminative (support vector machine)
 - need to choose the kernel and evaluate inner products between the original feature vectors
- Generative model
 - need to define class conditional distributions

Model specification: "Naive Bayes" model

- We can treat each word detector $\phi_i(\mathbf{x})$ as an independent expert that provides some information about the classification
- We combine these "expert opinions" by modeling their decisions given the labels:

$$P(\Phi(\mathbf{x})|y,\theta) = \left[\prod_{k=1}^{m} P(\phi_k(\mathbf{x})|y,\theta_k)\right]$$

where $P(\phi_k(\mathbf{x})|y,\theta_k)$ is the conditional probability that the k^{th} word appears in a document labeled y. θ_k are the parameters associated with this conditional probability.

• Classification via Bayes rule:

$$P(y|\Phi(\mathbf{x}),\theta) = \frac{P(\Phi(\mathbf{x})|y,\theta)P(y)}{\sum_{y'=0,1} P(\Phi(\mathbf{x})|y',\theta)P(y')}$$

Naive Bayes estimation

• We can write the conditional probabilities of a single feature as

$$P(\phi_k(\mathbf{x})|y,\theta_k) = \theta_{k|y}^{\phi_k(\mathbf{x})} (1 - \theta_{k|y})^{1 - \phi_k(\mathbf{x})}$$

where $\theta_{k|y}$ is the probability that the word k appears in a document labeled y and $\theta_k = \{\theta_{k|1}, \theta_{k|0}\}.$

Naive Bayes estimation cont'd

$$P(\phi_k(\mathbf{x})|y,\theta_k) = \theta_{k|y}^{\phi_k(\mathbf{x})} (1 - \theta_{k|y})^{1 - \phi_k(\mathbf{x})}$$

• Maximum likelihood estimation (here for a single feature)

$$J_{n}(\theta_{k}) = \sum_{i=1}^{n} \log P(\phi_{k}(\mathbf{x}_{i})|y_{i},\theta_{k})$$

=
$$\sum_{i=1}^{n} \left[\phi_{k}(\mathbf{x}_{i})\log(\theta_{k|y_{i}}) + (1 - \phi_{k}(\mathbf{x}_{i}))\log(1 - \theta_{k|y_{i}})\right]$$

=
$$\sum_{y=0,1} \left[N_{ky}\log(\theta_{k|y}) + (N_{y} - N_{ky})\log(1 - \theta_{k|y})\right]$$

 $N_{ky} = \#$ of documents containing word k and labeled y $N_y = \#$ of documents with label y

Naive Bayes estimation cont'd

• We can solve for the parameters directly

$$\begin{split} J_n(\theta_k) &= \sum_{y=0,1} \left[N_{ky} \log(\theta_{k|y}) + (N_y - N_{ky}) \log(1 - \theta_{k|y}) \right] \\ \frac{\partial}{\partial \theta_{k|y}} J_n(\theta_k) &= \frac{N_{ky}}{\theta_{k|y}} - \frac{N_y - N_{ky}}{1 - \theta_{k|y}} = 0 \\ \Rightarrow \hat{\theta}_{k|y} &= \frac{N_{ky}}{N_y} \text{ (empirical fraction)} \end{split}$$

- **BUT**: we have very few documents and some words are rare; these estimates are unlikely to be good
- We need regularization...

Prior over the parameters

- Suppose we are dealing with simple coin flips (0/1), where parameter θ determines the probability of "1".
- We can construct a prior over θ on the basis of
 - 1. a default parameter choice p (in the absence of any data)
 - 2. how much we believe in the default choice (parameter n')
- Such a prior is known as the *beta distribution*:

$$P(\theta) \propto \theta^{n'p} (1-\theta)^{(n'-n'p)}$$

(n' and p are known as hyper-parameters)

Regularized Naive Bayes estimation

• To include the prior distribution $P(\theta_k)$ as a regularizer we maximize the penalized log-likelihood

$$J_{n}(\theta_{k}) = \sum_{y=0,1} \left[N_{ky} \log(\theta_{k|y}) + (N_{y} - N_{ky}) \log(1 - \theta_{k|y}) \right] \\ + \sum_{y=0,1} \log P(\theta_{k|y}) \\ = \sum_{y=0,1} \left[N_{ky} \log(\theta_{k|y}) + (N_{y} - N_{ky}) \log(1 - \theta_{k|y}) \right] \\ + \sum_{y=0,1} \left[n'p \log(\theta_{k|y}) + (n' - n'p) \log(1 - \theta_{k|y}) \right]$$

• The resulting parameter estimates are

$$\hat{\theta}_{k|y} = \frac{N_{ky} + n'p}{N_y + n'}$$

Are we done ... is regularization enough?