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Topics

e Support vector machine (part 2)
— optimization, interpretation
— kernel function, examples

e Text classification example
— model specification
— model estimation with regularization
— feature selection
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Support vector machine

e \WWe minimize a regularization penalty
d
[wl?/2=ww/2="> wi/2
j=1

subject to the classification constraints

yilwo+wix;] —1>0, i=1,...,n

e The attained margin is now .
given by 1/|lw]| :

e Only a few of the classification i
constraints are relevant o

— support vectors
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Optimization

e We have to solve the following quadratic programming
problem to find the values for the Lagrange multipliers «;
associated with the classification constraints:

Zaz — — Z oy (X5 %)

1,7=1
where

n
a, >0, 1=1,....n, Zaiyi:()

(For non-separable problems we limit o; < C)

e The resulting decision boundary has an interpretable form

W' X+ wo = g a; i (X5 X) + Wo
€SV
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Interpretation of support vector machines

e To use support vector machines we have to specify only the
inner products (or kernel) between the examples (x} x)

e The weights {«;} associated with the training examples are
solved by enforcing the classification constraints.

= sparse solution

e \We make decisions by comparing each new example x with
only the support vectors {x;};csv:

y = sign Z Qi i (X X) + o
€SV
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Non-linear classifier

e So far our classifier can make only linear separations
e We can easily obtain a non-linear classifier by mapping our
examples x = |[z1 3] into longer feature vectors ®(x)

®(x) = [27 =5 V2rire V211 V219 1 1]

and applying the linear classifier to the new feature vectors
$(x) instead
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Non-linear classifier

Non-linear separator in the original space
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Feature mapping and kernels

e Let's look at the previous example in a bit more detail

x — ®(x) = [#? 22 V2r120 V221 V2o 1]

e The SVM classifier deals only with inner products of examples
(or feature vectors). In this example,

O(x)TO(x) = afxlP + xix + 2ximexxh + 2212 + 220l + 1

(1 + 2125 + zoxh)?

(1 + (XTX'))2

But these inner products can be evaluated without ever
explicitly constructing the feature vectors ®(x)!

o K(x,x')=(1+ (XTX’))2 is a kernel function (inner product
in the feature space)
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Examples of kernel functions

e Linear kernel
K(x,x') = (x'x)
e Polynomial kernel
K(x,x') = (1 + (XTX’))p

where p = 2,3,.... To get the feature vectors we
concatenate all pt” order polynomial terms of the components
of x (weighted appropriately)

e Radial basis kernel

1
(. x) = exp 5 x -

In this case the feature space consists of functions and results
in a non-parametric classifier.
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SVM examples
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Dimensionality and complexity
e Example: even for small values of p the polynomial kernel
K(x,x')=(1+ (XTX’))p
corresponds to long feature vectors ®(x).

In two dimensions: In three dimensions

degree p # of features degree p # of features

2 6 2 10
3 10 3 20
4 15 4 35
5 21 5 56

(it gets much worse in higher dimensions)

e The dimensionality of the feature space does not tell the
whole story
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Cross-validation error

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

# support vectors

Leave-one-out CV error < —
# of training examples
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SVM examples

e Digit recognition example (16x16 grayscale pixel images)

Method error %

SVM (4" order polynomial) 1.1

LeNet 1 (neural network) 1.7 (hand tuned)
LeNet 4 (neural network) 1.1 (hand tuned)
Tangent distance (template matching) 0.7 (hand tuned)

e Document classification, etc.
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Topics

e Text classification example
— model specification
— model estimation with regularization
— feature selection
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Example problem

e Text classification (information retrieval)

— a large number of documents x in a database
— only a few labeled documents {(x1,%1),---, (Xn,Yn)}

e We wish to build a classifier on the basis of the few labeled
training examples (documents).
— we assume for simplicity that the labels are binary (1/0)

e Several steps we need to take:
1. feature transformation
2. model/classifier specification
3. model/classifier estimation with regularization
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Feature transformation

e The presence/absence of specific words in a document carries
information about what the document is about

e We can construct m (about 10,000) indicator features
(basis functions) {¢r(x)} for whether a word appears in
the document

¢r(x) =1, if word k appears in document x; zero otherwise

D(x) = [Pp1(xX), ..., dm(x)]! is the resulting feature vector

Tommi Jaakkola, MIT Al Lab 16



Classifiers

e Discriminative (support vector machine)
— need to choose the kernel and evaluate inner products
between the original feature vectors

e Generative model
— need to define class conditional distributions

Tommi Jaakkola, MIT Al Lab 17



Model specification: “Naive Bayes” model

e We can treat each word detector ¢;(x) as an independent
expert that provides some information about the classification

e We combine these “expert opinions” by modeling their
decisions given the labels:

P(®(x)y,0) = | | [ P(¢r(x)]y,6%)
| k=1

where P(¢r(x)|y,0r) is the conditional probability that the
k'™ word appears in a document labeled y. 6 are the
parameters associated with this conditional probability.

e Classification via Bayes rule:

 P(®(x)|y,0)P(y)
P(y|®(x),0) = > o1 P(@)|y, 0)P(y)
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Naive Bayes estimation

e We can write the conditional probabilities of a single feature
as

P(r(x)ly, 0) = 05 (1 = Oy, )19+

where 0y, is the probability that the word k& appears in a
document labeled y and 0y = {01, Okjo}-
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Naive Bayes estimation cont’d

P(r(x)ly, 0) = 045 (1 = Oy, )19+

e Maximum likelihood estimation (here for a single feature)

> log P(¢r(xi)yi, 0k)

Jn(0p) = .
_ Z (61 (%:) log(Okpy,) + (1 — k() log(1 — Oyyy,)]
— Z [Nky log(ﬁk‘y) + (Ny — Nky) log(l - ek\y)]

Ny, = # of documents containing word £ and labeled y
N, = # of documents with label y
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Naive Bayes estimation cont’d

e \We can solve for the parameters directly

Tn(0k) = D [Niylog(Orpy) + (Ny — Niy)log(1 — O]
y=0,1
0 Ny N, — N
In(Or) = ———=* =0
DOy ) Okly L= Oy
~ N Y . . .
= Okly = ——— (empirical fraction)

Ny

e BUT: we have very few documents and some words are rare;
these estimates are unlikely to be good
e \We need regularization...
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Prior over the parameters

e Suppose we are dealing with simple coin flips (0/1), where
parameter 6 determines the probability of “1".

e \We can construct a prior over 6 on the basis of
1. a default parameter choice p (in the absence of any data)
2. how much we believe in the default choice (parameter n')

e Such a prior is known as the 2
beta distribution:

P#) x 67 (1 — @) —mp)

p=05n=01,273

(n’ and p are known as hyper-parameters)
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Regularized Naive Bayes estimation

e To include the prior distribution P(6y) as a regularizer we
maximize the penalized log-likelihood

Jn(0k) = Z [Nkylog(ﬁk‘y) (Ny = Niy) log(l_ek\y)]

Z log P(0,)

y=0,1

= > [Niylog(Ory,) + (Ny — Nigy) log(1 — Oy,)]

y=0,1

+ Y, [n'plog(kyy) + (' — n'p)log(1 — O,)]

y=0,1

e [he resulting parameter estimates are

é _Nky+n/p
kly — Ny + o/
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Are we done ...
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is regularization enough?
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