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Topics

• Feature selection

– information criterion

– greedy selection

– selection via regularization

• Combination of methods

– forward fitting (regression)

– boosting (classification)
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Feature selection

• Various objectives

– noise reduction

– additional regularization

– reduction of computational effort

etc.
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Feature selection example

• Our goal here is to reduce the number of useless word

detectors/features

φk(x) = 1 if word k is present and 0 otherwise

y = 0, 1 document label

• Suppose we have already estimated P (φk|y, θ̂k) for each

word k and label y. Here the variable φk would take the

value φk(x) for any document x.

To simplify notation we define (unregularized estimates)

P̂ (y) (estimated prior class freq.)

P̂ (φk, y) = P (φk|y, θ̂k)P̂ (y)

P̂ (φk) =
∑

y=0,1

P̂ (φk, y) (estimated word freq.)
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Feature selection example cont’d

• We can select features which alone would provide substantial

amount of information about the label

• More formally, we can pick features that have a high value

of mutual information with the labels:

I(φk; y) =
∑

φk=0,1

∑
y=0,1

P̂ (φk, y) log2

[
P̂ (φk, y)

P̂ (φk)P̂ (y)

]

This is a measure of distance between P̂ (φk, y) and

P̂ (φk)P̂ (y), where

P̂ (φk, y) is our best estimate of the relation between the

single feature and the label

P̂ (φk)P̂ (y) would be our estimate if we assumed a priori

that features and labels are independent
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A bit of background

• Entropy (uncertainty) of a binary random variable y

H(y) = −
∑

y=0,1

P (y) log2 P (y)
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Why Shannon entropy?
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Background cont’d

• Properties of mutual information:

I(φk; y) =
∑

φk=0,1

∑
y=0,1

P (φk, y) log2

P (φk, y)
P (φk)P (y)

1. I(φk; y) = I(y;φk) (symmetry)

2. If φk and y are independent, I(φk; y) = 0
3. I(φk; y) ≤ H(y), I(φk; y) ≤ H(φk)
4. I(φk; y) = H(y)−H(y|φk) = H(φk)−H(φk|y)
where the conditional entropy H(y|φk) is defined as

H(y|φk) =
∑

φk=0,1

P (φk)

− ∑
y=0,1

P (y|φk) log2 P (y|φk)
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Background cont’d

• Venn diagram

φkH(     ) H(y)

φkH(    | y ) φkI(     ; y ) φkH( y |     )

I(φk; y) = H(y)−H(y|φk) = H(φk)−H(φk|y)
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Feature selection: the criterion

• We try to remove useless word detectors

φk = 0, 1 whether kth word is present in a document

y = 0, 1 document label

• We select only features that have a high value of mutual

information with the labels (i.e., knowing the value of the

feature tells us a lot about what the label is):

I(φk; y) =
∑

φk=0,1

∑
y=0,1

P̂ (φk, y) log2

[
P̂ (φk, y)

P̂ (φk)P̂ (y)

]

– how many features?

– redundancy?

– coordination?
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Other ways of selecting features

• Let’s try to solve the document classification task with a

logistic regression model

Our predictions based on m (initially 10,000) binary word

features {φ1(x), . . . , φm(x)} would be

P (y = 1|x,w) = g( w0 + w1φ1(x) + . . . + wmφm(x) )

where g(·) is the logistic function.

• We’d like to find a small subset of the features that lead to

good (better) classification

• Alternatives (in addition to the one presented earlier):

1. greedily add features

2. find relevant features using regularization
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Greedy selection of features

1. Find k for which

P (y = 1|x,w) = g( w0 + wkφk(x) )

yields the best classifier

2. Find k′ for which

P (y = 1|x,w) = g( w0 + wkφk(x) + wk′φk′(x) )

yields the best classifier. Here all the parameters w0, wk and

wk′ should be reoptimized when trying to add each k′

3. ...

• When/how do we stop?
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Feature selection via regularization

P (y = 1|x,w) = g( w0 + w1φ1(x) + . . . + wmφm(x) )

• We can introduce a regularization penalty that tries to set

the weights to zero unless they are “useful”

J(w;C) =
n∑

t=1

log P (yt|xt,w)− C

m∑
i=1

|wi|

where {(x1, y1), . . . , (xn, yn)} is our training set. Note that

w0 is not penalized.

• The selection of non-zero weights here is carried out jointly,

not individually

• Why should this regularization penalty work at all?
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Feature selection via regularization cont’d

• The effect of the regularization penalty on feature selection

depends on its derivative at w ≈ 0
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J(w;C) =
n∑

t=1

log P (yt|xt,w)− C
m∑

i=1

|wi|

• How do we deal with redundant features?
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Combination of methods

• Similarly to feature selection we can select simple “weak”

classification or regression methods and combine them into

a single “strong” method

• Example techniques

– forward fitting (regression)

– boosting (classification)
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Combination of regression methods

• We want to combine multiple “weak” regression methods

into a single “strong” method

• Suppose we are given a family simple regression methods

f(x; θ) = w φk(x)

where θ = {k, w} (the parameters specify a single basis

function as well as the associated weight)

• Forward-fitting: sequentially introduce new simple regression

methods to reduce the remaining prediction error
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Forward fitting cont’d

Simple family: f(x; θ) = wφk(x), θ = {k, w}
• We can fit each new component to reduce the prediction

error; in each iteration we solve the same type of estimation

problem

Step 1: θ̂1← argmin
θ

n∑
i=1

(yi − f(xi; θ))2

Step 2: θ̂2← argmin
θ

n∑
i=1

(yi − f(xi; θ̂1)︸ ︷︷ ︸
error

−f(xi; θ))2

Step 3: . . .

• The resulting combined regression method

f̂(x) = f(x; θ̂1) + . . . + f(x; θ̂m)

has much lower (training) error.
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Combination of classifiers

• Suppose we have a family of component classifiers

(generating ±1 labels) such as decision stumps:

h(x; θ) = sign( w1 xk − w0 )

where θ = {k, w1, w0}.

Each decision stump pays attention to only a single

component of the input vector
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Combination of classifiers con’d

• We’d like to combine simple classifiers in a manner similar

to the regression models, i.e., construct the final classifier as

the sign of

ĥm(x) = α̂1 h(x; θ̂1) + . . . + α̂m h(x; θ̂m)

where the “votes” α are used to emphasize components that

are more reliable than others

• Surely any new component classifier that we add should

concentrate on the training examples that seem hard to

classify.

Part of the problem here is to estimate the new components

(and votes) in a modular fashion
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