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Regularization example

We’ll comence here by expanding a bit on the relation between the “effective” number of
parameter choices and regularization discussed in the lectures. We do this in the context
of a simple 1-dim logistic regression model

P (y = 1|x,w) = g (w0 + w1x ) (1)

where g(z) = (1 + exp{−z})−1. We will assume here that x ∈ [−1, 1].

To understand regularization in this context, we’ll try to carve up our parameter space
w = [w0, w1]T ∈ R2 into regions such that our loss (or log-probability) is roughly constant
within each region. This will help us determine how many “effective” parameter choices we
really have. Ideally, the regularization that we impose would directly limit (our estimate
of) the number of parameter choices.

A bit more precisely, we want the log-probability logP (y|x,w) to vary by no more than ε
within each region in the parameter space. To find such regions, we first examine how the
log of the logistic function varies as a function of its input: (this result will be useful to
you later on)

∂

∂z
log g(z) =

1

g(z)

∂

∂z
g(z) =

1

g(z)
g(z)(1− g(z)) = 1− g(z) (2)

In other words, since g(z) ∈ [0, 1] (probability), the derivative here is also bounded by 1.
The function log g(z) therefore varies at most linearly with slope 1 as a function of z, or

| log g(z)− log g(z′)| ≤ |z − z′| (3)

for any two points z and z′. To use this result, we define z = w0 + w1x and z′ = w′0 + w′1x
for any x ∈ [−1, 1]. This gives

| logP (y = 1|x,w)− logP (y = 1|x,w′)| = | log g(z)− log g(z′)| ≤ |z − z′| (4)

= |(w0 − w′0) + (w1 − w′1)x| (5)

≤ |(w0 − w′0)|+ |(w1 − w′1)x| (6)

≤ |(w0 − w′0)|+ |(w1 − w′1)| (7)

since |x| ≤ 1 by assumption. So, whenever |w0 − w′0| + |w1 − w′1| ≤ ε, the corresponding
losses or (negative) log-probabilities are also bounded by ε. We can therefore carve up the
parameter space by finding discrete points w(i) and regions around them such that

|w(i)
0 − w′0|+ |w

(i)
1 − w′1| ≤ ε (8)

whenever w′ belongs to the ith region. These regions are shown in Figure 1 for ε = 0.4. We
have also included in the Figure the area limited by the Euclidean norm of the parameter
vector, ‖w‖2. Increasing the the limit ‖w‖2 clearly incorporates more “choices” and it
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Figure 1: Regions in the parameter space corresponding to roughly constant losses for
simple logistic regression model.

makes sense to use this type of norm in regularization, i.e., in limiting the effective number
of parameter choices.

Note: Explicitly finding the regions as we have done here is merely a conceptual device in
understanding (and analyzing) estimation methods. We never have to identify such regions
nor the discrete “effective” parameter choices in practice.


